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On the classification of isoparametric

hypersurfaces with four distinct
principal curvatures in spheres

By Stefan Immervoll

Abstract

In this paper we give a new proof for the classification result in [3]. We
show that isoparametric hypersurfaces with four distinct principal curvatures
in spheres are of Clifford type provided that the multiplicities m1,m2 of the
principal curvatures satisfy m2 ≥ 2m1 − 1. This inequality is satisfied for all
but five possible pairs (m1,m2) with m1 ≤ m2. Our proof implies that for
(m1,m2) 6= (1, 1) the Clifford system may be chosen in such a way that the
associated quadratic forms vanish on the higher-dimensional of the two focal
manifolds. For the remaining five possible pairs (m1,m2) with m1 ≤ m2 (see
[13], [1], and [15]) this stronger form of our result is incorrect: for the three
pairs (3, 4), (6, 9), and (7, 8) there are examples of Clifford type such that
the associated quadratic forms necessarily vanish on the lower-dimensional of
the two focal manifolds, and for the two pairs (2, 2) and (4, 5) there exist
homogeneous examples that are not of Clifford type; cf. [5, 4.3, 4.4].

1. Introduction

In this paper we present a new proof for the following classification result
in [3].

Theorem 1.1. An isoparametric hypersurface with four distinct prin-
cipal curvatures in a sphere is of Clifford type provided that the multiplicities
m1,m2 of the principal curvatures satisfy the inequality m2 ≥ 2m1 − 1.

An isoparametric hypersurface M in a sphere is a (compact, connected)
smooth hypersurface in the unit sphere of the Euclidean vector space
V = RdimV such that the principal curvatures are the same at every point.
By [12, Satz 1], the distinct principal curvatures have at most two different
multiplicities m1, m2. In the following we assume that M has four distinct
principal curvatures. Then the only possible pairs (m1,m2) with m1 = m2 are
(1, 1) and (2, 2); see [13], [1]. For the possible pairs (m1,m2) with m1 < m2

we have (m1,m2) = (4, 5) or 2φ(m1−1) divides m1 + m2 + 1, where φ : N → N
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is given by

φ(m) =
∣∣{i | 1 ≤ i ≤ m and i ≡ 0, 1, 2, 4 (mod 8)}

∣∣;
see [15]. These results imply that the inequality m2 ≥ 2m1− 1 in Theorem 1.1
is satisfied for all possible pairs (m1,m2) with m1 ≤ m2 except for the five
pairs (2, 2), (3, 4), (4, 5), (6, 9), and (7, 8).

In [5], Ferus, Karcher, and Münzner introduced (and classified) a class of
isoparametric hypersurfaces with four distinct principal curvatures in spheres
defined by means of real representations of Clifford algebras or, equivalently,
Clifford systems. A Clifford system consists of m + 1 symmetric matrices
P0, . . . , Pm with m ≥ 1 such that P 2

i = E and PiPj + PjPi = 0 for i, j =
0, . . . ,m with i 6= j, where E denotes the identity matrix. Isoparametric
hypersurfaces of Clifford type in the unit sphere S2l−1 of the Euclidean vector
space R2l have the property that there exists a Clifford system P0, . . . , Pm of
symmetric (2l × 2l)-matrices with l − m − 1 > 0 such that one of their two
focal manifolds is given as

{x ∈ S2l−1 | 〈Pix, x〉 = 0 for i = 0, . . . ,m},

where 〈 · , · 〉 denotes the standard scalar product; see [5, Section 4, Satz (ii)].
Families of isoparametric hypersurfaces in spheres are completely determined
by one of their focal manifolds; see [12, Section 6], or [11, Proposition 3.2].
Hence the above description of one of the focal manifolds by means of a Clifford
system characterizes precisely the isoparametric hypersurfaces of Clifford type.
For notions like focal manifolds or families of isoparametric hypersurfaces, see
Section 2.

The proof of Theorem 1.1 in Sections 3 and 4 shows that for an isopara-
metric hypersurface (with four distinct principal curvatures in a sphere) with
m2 ≥ 2m1−1 and (m1,m2) 6= (1, 1) the Clifford system may be chosen in such
a way that the higher-dimensional of the two focal manifolds is described as
above by the quadratic forms associated with the Clifford system. This state-
ment is in general incorrect for the isoparametric hypersurfaces of Clifford type
with (m1,m2) = (3, 4), (6, 9), or (7, 8); see the remarks at the end of Section 4.
Moreover, for the two pairs (2, 2) and (4, 5) there are homogeneous examples
that are not of Clifford type. Hence the inequality m2 ≥ 2m1 − 1 is also a
necessary condition for this stronger version of Theorem 1.1.

Our proof of Theorem 1.1 makes use of the theory of isoparametric triple
systems developed by Dorfmeister and Neher in [4] and later papers. We need,
however, only the most elementary parts of this theory. Since our notion
of isoparametric triple systems is slightly different from that in [4], we will
present a short introduction to this theory in the next section. Based on
the triple system structure derived from the isoparametric hypersurface M in
the unit sphere of the Euclidean vector space V = R2l, we will introduce in
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Section 3 a linear operator defined on the vector space S2l(R) of real, symmetric
(2l × 2l)-matrices. By means of this linear operator we will show that for
m2 ≥ 2m1 − 1 with (m1,m2) 6= (1, 1) the higher-dimensional of the two focal
manifolds may be described by means of quadratic forms as in the Clifford
case. These quadratic forms are actually accumulation points of sequences
obtained by repeated application of this operator as in a dynamical system.
In the last section we will prove that these quadratic forms are in fact derived
from a Clifford system. For (m1,m2) = (1, 1), even both focal manifolds can
be described by means of quadratic forms, but only one of them arises from a
Clifford system; see the remarks at the end of this paper.

Acknowledgements. Some of the ideas in this paper are inspired by dis-
cussions on isoparametric hypersurfaces with Gerhard Huisken in 2004. The
decision to tackle the classification problem was motivated by an interesting
discussion with Linus Kramer on the occasion of Reiner Salzmann’s 75th birth-
day. I would like to thank Gerhard Huisken and Linus Kramer for these stimu-
lating conversations. Furthermore, I would like to thank Reiner Salzmann and
Elena Selivanova for their support during the work on this paper. Finally, I
would like to thank Allianz Lebensversicherungs-AG, and in particular Markus
Faulhaber, for providing excellent working conditions.

2. Isoparametric triple systems

The general reference for the subsequent results on isoparametric hyper-
surfaces in spheres is Münzner’s paper [12], in particular Section 6. For further
information on this topic, see [2], [5], [13], [17], or [6], [7]. The theory of isopara-
metric triple systems was introduced in Dorfmeister’s and Neher’s paper [4].
They wrote a whole series of papers on this subject. For the relation between
this theory and geometric properties of isoparametric hypersurfaces, we refer
the reader to [7], [8], [9], and [10]. In this section we only present the parts of
the theory of isoparametric triple systems that are relevant for this paper.

Let M denote an isoparametric hypersurface with four distinct principal
curvatures in the unit sphere S2l−1 of the Euclidean vector space V = R2l.
Then the hypersurfaces parallel to M (in S2l−1) are also isoparametric, and
S2l−1 is foliated by this family of isoparametric hypersurfaces and the two focal
manifolds M+ and M−. Choose p ∈M+ and let p′ ∈ S2l−1 be a vector normal
to the tangent space TpM+ in TpS2l−1 (where tangent spaces are considered
as subspaces of R2l). Then the great circle S through p and p′ intersects
the hypersurfaces parallel to M and the two focal manifolds orthogonally at
each intersection point. The points of S ∩M+ are precisely the four points
±p,±p′, and S ∩M− consists of the four points ±(1/

√
2)(p± p′). For q ∈M−

instead of p ∈ M+, an analogous statement holds. Such a great circle S
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will be called a normal circle throughout this paper. For every point x ∈
S2l−1\(M+ ∪M−) there exists precisely one normal circle through x; see [12,
in particular Section 6], for these results.

By [12, Satz 2], there is a homogeneous polynomial function F of degree
4 such that M = F−1(c) ∩ S2l−1 for some c ∈ (−1, 1). This Cartan-Münzner
polynomial F satisfies the two partial differential equations

〈 gradF (x), gradF (x)〉 = 16〈x, x〉3,
∆F (x) = 8(m2 −m1)〈x, x〉.

By interchanging the multiplicites m1 and m2 we see that the polynomial −F
is also a Cartan-Münzner polynomial. The polynomial F takes its maximum
1 (minimum −1) on S2l−1 on the two focal manifolds. For a fixed Cartan-
Münzner polynomial F , let M+ always denote the focal manifold on which
F takes its maximum 1. Then we have M+ = F−1(1) ∩ S2l−1 and M− =
F−1(−1) ∩ S2l−1, where dimM+ = m1 + 2m2 and dimM− = 2m1 + m2; see
[12, proof of Satz 4].

Since F is a homogeneous polynomial of degree 4, there exists a sym-
metric, trilinear map {·, ·, ·} : V × V × V → V , satisfying 〈{x, y, z}, w〉 =
〈x, {y, z, w}〉 for all x, y, z, w ∈ V , such that F (x) = (1/3)〈{x, x, x}, x〉. We
call (V, 〈·, ·〉, {·, ·, ·}) an isoparametric triple system. In [4, p. 191], isoparamet-
ric triple systems were defined by F (x) = 3〈x, x〉2 − (2/3)〈{x, x, x}, x〉. This
is the only difference between the definition of triple systems in [4] and our
definition. Hence the proofs of the following results are completely analogous
to the proofs in [4]. The description of the focal manifolds by means of the
polynomial F implies that

M+ = {p ∈ S2l−1 | {p, p, p} = 3p} and M− = {q ∈ S2l−1 | {q, q, q} = −3q};

cf. [4, Lemma 2.1]. For x, y ∈ V we define self-adjoint linear maps T (x, y) :
V → V : z 7→ {x, y, z} and T (x) = T (x, x). Let µ be an eigenvalue of T (x).
Then the eigenspace Vµ(x) is called a Peirce space. For p ∈ M+, q ∈ M− we
have orthogonal Peirce decompositions

V = span{p} ⊕ V−3(p)⊕ V1(p) = span{q} ⊕ V3(q)⊕ V−1(q)

with dimV−3(p) = m1 + 1, dimV1(p) = m1 + 2m2, dimV3(q) = m2 + 1, and
dimV−1(q) = 2m1 + m2; cf. [4, Theorem 2.2]. These Peirce spaces have a
geometric meaning that we are now going to explain. By differentiating the
map V → V : x 7→ {x, x, x} − 3x, which vanishes identically on M+, we
see that TpM+ = V1(p) and, dually, TqM− = V−1(q). Thus V−3(p) is the
normal space of TpM+ in TpS2l−1; cf. [7, Corollary 3.3]. Hence for every
point p′ ∈ S2l−1 ∩ V−3(p) there exists a normal circle through p and p′. In
particular, we have S2l−1 ∩ V−3(p) ⊆M+ and, dually, S2l−1 ∩ V3(q) ⊆M−; cf.
[4, Equations 2.6 and 2.13], or [8, Section 2].
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By [8, Theorem 2.1], we have the following structure theorem for isopara-
metric triple systems; cf. the main result of [4].

Theorem 2.1. Let S be a normal circle that intersects M+ at the four
points ±p,±p′ and M− at the four points ±q,±q′. Then V decomposes as an
orthogonal sum

V = span (S)⊕ V ′−3(p)⊕ V ′−3(p′)⊕ V ′3(q)⊕ V ′3(q′),

where the subspaces V ′−3(p), V ′−3(p′), V ′3(q), V ′3(q′) are defined by V−3(p) =
V ′−3(p)⊕ span{p′}, V−3(p′) = V ′−3(p′)⊕ span{p}, V3(q) = V ′3(q)⊕ span{q′}, and
V3(q′) = V ′3(q′)⊕ span{q}.

Let p, q, p′, and q′ in the theorem above be chosen in such a way that
p = (1/

√
2)(q − q′) and p′ = (1/

√
2)(q + q′). The linear map T (p, p′) =

(1/2)T (q − q′, q + q′) = (1/2)
(
T (q)− T (q′)

)
then acts as 2 idV ′3 (q) on V ′3(q), as

−2 idV ′3 (q′) on V ′3(q′), and vanishes on V ′−3(p)⊕V ′−3(p′). Dually, the linear map
T (q, q′) acts as 2 idV ′−3(p)

on V ′−3(p), as −2 idV ′−3(p
′) on V ′−3(p′), and vanishes on

V ′3(q) ⊕ V ′3(q′); cf. also [8, proof of Theorem 2.1]. In this paper we need this
linear map only in the proof of Theorem 1.1 for the case m2 = 2m1 − 1; see
Section 4.

3. Quadratic forms vanishing on a focal manifold

Let M be an isoparametric hypersurface with four distinct principal cur-
vatures in the unit sphere S2l−1 of the Euclidean vector space V = R2l. Let
Φ denote the linear operator on the vector space S2l(R) of real, symmetric
(2l × 2l)-matrices that assigns to each matrix D ∈ S2l(R) the symmetric ma-
trix associated with the quadratic form R2l → R : v 7→ tr(T (v)D), where
T (v) is defined as in the preceding section. For D ∈ S2l(R) and a subspace
U ≤ V we denote by tr(D|U ) the trace of the restriction of the quadratic form
R2l → R : v 7→ 〈v,Dv〉 to U , i.e. tr(D|U ) is the sum of the values of the
quadratic form associated with D on an arbitrary orthonormal basis of U .

Lemma 3.1. Let D ∈ S2l(R), p ∈M+, and q ∈M−. Then we have

〈p,Φ(D)p〉= 2〈p,Dp〉 − 4 tr(D|V−3(p)) + tr(D),

〈q,Φ(D)q〉=−2〈q,Dq〉+ 4 tr(D|V3(q))− tr(D).

Proof. For reasons of duality it suffices to prove the first statement. We
choose orthonormal bases of V−3(p) and V1(p). Together with p, the vectors
in these bases yield an orthonormal basis of V . With respect to this basis,
the linear map T (p) is given by a diagonal matrix; see the preceding section.
Hence we get

〈p,Φ(D)p〉 = tr(T (p)D) = 3〈p,Dp〉 − 3 tr(D|V−3(p)) + tr(D|V1(p)).

Then the claim follows because of 〈p,Dp〉+ tr(D|V−3(p)) + tr(D|V1(p)) = tr(D).
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Motivated by the previous lemma we set

Φ+ : S2l(R)→ S2l(R) : D 7→ −1
4

(
Φ(D)− 2D − tr(D)E

)
,

where E denotes the identity matrix. Then we have for p ∈M+ and q ∈M−
〈p,Φ+(D)p〉= tr(D|V−3(p)),

〈q,Φ+(D)q〉= 〈q,Dq〉 − tr(D|V3(q)) + 1
2 tr(D).

Lemma 3.2. Let p, q ∈ M− be orthogonal points on a normal circle,
q′ ∈M−, r ∈M+, D ∈ S2l(R), and n ∈ N. Then we have

(i)
∣∣〈r,Φn

+ (D)r〉
∣∣ ≤ (m1 + 1)n maxx∈M+

∣∣〈x,Dx〉∣∣,
(ii)

∣∣〈p,Φn
+ (D)p〉+ 〈q,Φn

+ (D)q〉
∣∣ ≤ 2(m1 + 1)n maxx∈M+

∣∣〈x,Dx〉∣∣,
(iii)

∣∣〈p,Φn
+ (D)p〉 − 〈q′,Φn

+ (D)q′〉
∣∣ ≤ 2(m2 + 2)n maxy∈M−

∣∣〈y,Dy〉∣∣,
(iv)

∣∣〈p,Φn
+ (D)p〉

∣∣ ≤ (m1+1)n maxx∈M+

∣∣〈x,Dx〉∣∣+(m2+2)n maxy∈M−
∣∣〈y,Dy〉∣∣.

Proof. Because of 〈r,Φ+(D)r〉 = tr(D|V−3(r)) with dimV−3(r) = m1 + 1
and S2l−1 ∩ V−3(r) ⊆M+ we get∣∣〈r,Φ+(D)r〉

∣∣ ≤ (m1 + 1) max
x∈M+

∣∣〈x,Dx〉∣∣.
Then (i) follows by induction. Since p and q are orthogonal points on a normal
circle, we have r± = (1/

√
2)(p± q) ∈M+ (see the beginning of Section 2) and

hence ∣∣〈p,Φn
+ (D)p〉+ 〈q,Φn

+ (D)q〉
∣∣= ∣∣ tr(Φn

+ (D)|span{p,q})
∣∣

=
∣∣〈r+,Φn

+ (D)r+〉+ 〈r−,Φn
+ (D)r−〉

∣∣
≤ 2(m1 + 1)n max

x∈M+

∣∣〈x,Dx〉∣∣
by (i). Because of 〈p,Φ+(D)p〉 = 〈p,Dp〉 − tr(D|V3(p)) + (1/2) tr(D), the anal-
ogous equation with p replaced by q′, dimV3(p) = dimV3(q′) = m2 + 1 and
S2l−1 ∩ V3(p), S2l−1 ∩ V3(q′) ⊆M− we get∣∣〈p,Φ+(D)p〉 − 〈q′,Φ+(D)q′〉

∣∣
≤
∣∣〈p,Dp〉 − 〈q′, Dq′〉∣∣+

∣∣ tr(D|V3(p))− tr(D|V3(q′))
∣∣

≤ (m2 + 2) max
y,z∈M−

∣∣〈y,Dy〉 − 〈z,Dz〉∣∣.
By induction we obtain∣∣〈p,Φn

+ (D)p〉 − 〈q′,Φn
+ (D)q′〉

∣∣≤ (m2 + 2)n max
y,z∈M−

∣∣〈y,Dy〉 − 〈z,Dz〉∣∣
≤ 2(m2 + 2)n max

y∈M−

∣∣〈y,Dy〉∣∣.
Finally, (ii) and (iii) yield∣∣〈p,Φn

+ (D)p〉
∣∣≤ 1

2

∣∣〈p,Φn
+ (D)p〉+ 〈q,Φn

+ (D)q〉
∣∣+ 1

2

∣∣〈p,Φn
+ (D)p〉 − 〈q,Φn

+ (D)q〉
∣∣

≤ (m1 + 1)n max
x∈M+

∣∣〈x,Dx〉∣∣+ (m2 + 2)n max
y∈M−

∣∣〈y,Dy〉∣∣.
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Lemma 3.3. Let p, q ∈ M− be orthogonal points on a normal circle,
D ∈ S2l(R), d0 ≥ maxx∈M+

∣∣〈x,Dx〉∣∣, and let (dn)n be the sequence defined by

d1 =
∣∣〈p,Φ+(D)p〉 − 〈q,Φ+(D)q〉

∣∣,
dn+1 = (m2 + 2)dn − 4m2(m1 + 1)nd0

for n ≥ 1. Then we have∣∣〈p,Φn
+ (D)p〉 − 〈q,Φn

+ (D)q〉
∣∣ ≥ dn

for every n ≥ 1.

Proof. We prove this lemma by induction. For n = 1, the statement above
is true by definition. Now assume that∣∣〈p,Φn

+ (D)p〉 − 〈q,Φn
+ (D)q〉

∣∣ ≥ dn
for some n ≥ 1. Let q′ ∈ S2l−1 ∩ V3(p). Then p, q′ ∈M− are orthogonal points
on a normal circle. Hence we have

〈p,Φn
+ (D)p〉+ 〈q′,Φn

+ (D)q′〉 ≤ 2(m1 + 1)nd0

by Lemma 3.2(ii). Since q ∈ V3(p) with dimV3(p) = m2 + 1 we conclude that

tr(Φn
+ (D)|V3(p)) ≤ 〈q,Φ

n
+ (D)q〉+m2

(
2(m1 + 1)nd0 − 〈p,Φn

+ (D)p〉
)
.

Hence we obtain

〈p,Φn+1
+ (D)p〉= 〈p,Φn

+ (D)p〉 − tr(Φn
+ (D)|V3(p)) + 1

2 tr
(
Φn

+ (D)
)

(3.1)

≥ (m2 + 1)〈p,Φn
+ (D)p〉 − 〈q,Φn

+ (D)q〉+ 1
2 tr
(
Φn

+ (D)
)

−2m2(m1 + 1)nd0.

Analogously, for p′ ∈ S2l−1 ∩ V3(q) we get

〈p′,Φn
+ (D)p′〉+ 〈q,Φn

+ (D)q〉 ≥ −2(m1 + 1)nd0

by Lemma 3.2(ii) and hence

tr(Φn
+ (D)|V3(q)) ≥ 〈p,Φ

n
+ (D)p〉 −m2

(
2(m1 + 1)nd0 + 〈q,Φn

+ (D)q〉
)
.

As above, we conclude that

〈q,Φn+1
+ (D)q〉≤ (m2 + 1)〈q,Φn

+ (D)q〉 − 〈p,Φn
+ (D)p〉+ 1

2 tr
(
Φn

+ (D)
)

+2m2(m1 + 1)nd0.

Subtracting this inequality from inequality (3.1) we obtain that∣∣〈p,Φn+1
+ (D)p〉 − 〈q,Φn+1

+ (D)q〉
∣∣≥ (m2 + 2)

(
〈p,Φn

+ (D)p〉 − 〈q,Φn
+ (D)q〉

)
−4m2(m1 + 1)nd0.
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Also the analogous inequality with p and q interchanged is satisfied. Thus we
get ∣∣〈p,Φn+1

+ (D)p〉 − 〈q,Φn+1
+ (D)q〉

∣∣≥ (m2 + 2)
∣∣〈p,Φn

+ (D)p〉 − 〈q,Φn
+ (D)q〉

∣∣
−4m2(m1 + 1)nd0

≥ (m2 + 2)dn − 4m2(m1 + 1)nd0

= dn+1.

Lemma 3.4. Let p, q ∈ M− be orthogonal points on a normal circle and
assume that m2 ≥ 2m1 − 1. Then there exist a symmetric matrix D ∈ S2l(R)
and a positive constant d such that

1
(m2 + 2)n

∣∣∣∣〈p,Φn
+ (D)p〉 − 〈q,Φn

+ (D)q〉
∣∣∣∣ > d

for every n ≥ 1.

Proof. We choose D ∈ S2l(R) as the symmetric matrix associated with the
self-adjoint linear map on V = R2l that acts as the identity idV3(p) on V3(p), as
−idV3(q) on V3(q), and vanishes on the orthogonal complement of V3(p)⊕V3(q)
in V . Let x ∈ M+ and denote by u, v the orthogonal projections of x onto
V3(p) and V3(q), respectively. Then we have 〈x,Dx〉 = 〈u, u〉 − 〈v, v〉. By
[9, Lemma 3.1], or [11, Proposition 3.2], the scalar product of a point of M+

and a point of M− is at most 1/
√

2. If u 6= 0 then we have (1/‖u‖)u ∈ M−
and hence

〈u, u〉 = 〈x, u〉 =
〈
x, u
‖u‖

〉
‖u‖ ≤ 1√

2
‖u‖.

In any case we get ‖u‖ ≤ 1/
√

2 and hence 〈x,Dx〉 = 〈u, u〉 − 〈v, v〉 ≤ 1/2.
Analogously we see that 〈x,Dx〉 ≥ −1/2. We set d0 = 1/2. Then we have
d0 ≥ maxx∈M+

∣∣〈x,Dx〉∣∣, and we may define a sequence (dn)n as in Lemma 3.3.
Since p ∈ V3(q), q ∈ V3(p), and dimV3(p) = dimV3(q) = m2 + 1 we have

d1 =
∣∣〈p,Φ+(D)p〉 − 〈q,Φ+(D)q〉

∣∣ = 2(m2 + 2)

and hence

1
m2 + 2

d1 = 2,

1
(m2 + 2)2

d2 =
1

m2 + 2
d1 − 2m2

m1 + 1
(m2 + 2)2

,

...
1

(m2 + 2)n+1
dn+1 =

1
(m2 + 2)n

dn − 2m2
(m1 + 1)n

(m2 + 2)n+1
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for n ≥ 1. Thus we get

1
(m2 + 2)n+1

dn+1 = 2− 2m2

n−1∑
i=0

(m1 + 1)i+1

(m2 + 2)i+2

> 2− 2m2
m1 + 1

(m2 + 2)2

∞∑
i=0

(
m1 + 1
m2 + 2

)i
= 2− 2m2

m1 + 1
(m2 + 2)(m2 −m1 + 1)

.

We denote the term in the last line by d. Then d > 0 is equivalent to

(m2 + 2)(m2 −m1 + 1) > m2(m1 + 1).

We put f : R→ R : s 7→ s2− as− a with a = 2(m1− 1). The latter inequality
is equivalent to f(m2) > 0. Since f(a) = −a ≤ 0 and f(a+ 1) = 1 we see that
this inequality is indeed satisfied for m2 ≥ 2(m1 − 1) + 1. By Lemma 3.3, we
conclude that for m2 ≥ 2m1 − 1 we have

1
(m2 + 2)n

∣∣∣∣〈p,Φn
+ (D)p〉 − 〈q,Φn

+ (D)q〉
∣∣∣∣ ≥ 1

(m2 + 2)n
dn > d > 0

for every n ≥ 1.

Lemma 3.5. Set A(M+) = {A ∈ S2l(R) | 〈x,Ax〉 = 0 for every x ∈M+}
and assume that m2 ≥ 2m1 − 1. Then we have

M+ = {x ∈ S2l−1 | 〈x,Ax〉 = 0 for every A ∈ A(M+)}.

Proof. For B ∈ S2l(R) we set ‖B‖ = maxx∈M+∪M−
∣∣〈x,Bx〉∣∣. If ‖B‖ = 0

then the quadratic form R2l → R : v 7→ 〈v,Bv〉 vanishes on each normal circle
S at the eight points of S ∩ (M+ ∪M−). Therefore it vanishes entirely on each
normal circle and hence on V . This shows that B = 0, and hence ‖ ·‖ is indeed
a norm on S2l(R).

In the sequel we always assume that p, q ∈M− and D ∈ S2l(R) are chosen
as in Lemma 3.4. By Lemma 3.2(i) and (iv), the sequence(

1
(m2 + 2)n

Φn
+ (D)

)
n

is bounded with respect to the norm defined above. Let A ∈ S2l(R) be an
accumulation point of this sequence. By Lemma 3.2(i) we have∣∣〈r,Ar〉∣∣ ≤ lim

n→∞

(
m1 + 1
m2 + 2

)n
max
x∈M+

∣∣〈x,Dx〉∣∣ = 0

for every r ∈ M+. Thus the quadratic form R2l → R : v 7→ 〈v,Av〉 vanishes
entirely on M+. Since p, q ∈ M− are orthogonal points on a normal circle we
obtain 〈p,Ap〉 + 〈q, Aq〉 = 0. Furthermore, by Lemma 3.4 we have

∣∣〈p,Ap〉 −
〈q, Aq〉

∣∣ ≥ d > 0. Hence we get 〈p,Ap〉 6= 0.
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Choose p′ ∈ S2l−1\M+ arbitrarily. Let S′ be a normal circle through p′

and let q′ be one of the four points of S′ ∩M−. The previous arguments show
that there exists a matrix A′ ∈ A(M+) such that 〈q′, A′q′〉 6= 0. Then the
quadratic form associated with A′ vanishes on S′ precisely at the four points
of S′ ∩M+. In particular, we have 〈p′, A′p′〉 6= 0. Thus we get

{x ∈ S2l−1 | 〈x,Ax〉 = 0 for every A ∈ A(M+)} ⊆M+.

Since the other inclusion is trivial, the claim follows.

4. End of proof

Based on Lemma 3.5 we complete our proof of Theorem 1.1 by means of
the following

Lemma 4.1. Let M be an isoparametric hypersurface with four distinct
principal curvatures in the unit sphere S2l−1 of the Euclidean vector space R2l

and assume that

M+ = {x ∈ S2l−1 | 〈x,Ax〉 = 0 for every A ∈ A(M+)},

where A(M+) is defined as in Lemma 3.5. Then M is an isoparametric hyper-
surface of Clifford type provided that the multiplicities m1,m2 of the principal
curvatures satisfy the inequality m2 ≥ 2m1 − 1.

We treat the cases m2 ≥ 2m1 and m2 = 2m1 − 1 separately because of
the essentially different proofs for these two cases. Whereas the proof in the
first case is based on results of [8], the proof in the second case involves, in
addition, representation theory of Clifford algebras. For more information on
the special case (m1,m2) = (1, 1), see the remarks at the end of this section.

Proof of Lemma 4.1 (case m2 ≥ 2m1). For every matrix A ∈ A(M+)
we have a well-defined linear map ϕA : A(M+) → A(M+) : B 7→ ABA; see
[8, Proposition 3.1 (i)]. We first want to show that ϕA is injective for every
A ∈ A(M+)\{0}. Without loss of generality we may assume that A = (aij)i,j
is a diagonal matrix with aii = 0 for i > t, where t denotes the rank of A.
Assume that there exists a matrix B = (bij)i,j ∈ ker(ϕA)\{0}. Then we have
t < 2l and bij = 0 for 1 ≤ i, j ≤ t. Hence the nonzero entries of B lie in the two
blocks given by t+ 1 ≤ i ≤ 2l and 1 ≤ i ≤ t, t+ 1 ≤ j ≤ 2l. By [8, Proposition
3.1 (ii)], we have t ≥ 2(m2 + 1) and hence the rank of both blocks is bounded
by 2l− t ≤ 2(m1 +m2 + 1)− 2(m2 + 1) = 2m1. Thus the rank of B is at most
4m1 and, again by [8, Proposition 3.1 (ii)], at least 2(m2 + 1). We conclude
that 2m1 ≥ m2 + 1 in contradiction to m2 ≥ 2m1. Hence ϕA is a bijection.

The only nonzero entries of a matrix C = (cij)i,j in the image of ϕA lie
in the block given by 1 ≤ i, j ≤ t. Thus every matrix in A(M+), considered
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as a self-adjoint linear map on R2l, vanishes on the kernel of A. We want to
show that ker(A) = {0}. Otherwise there exists a point q ∈ S2l−1 ∩ ker(A).
For every C ∈ A(M+) we have 〈q, Cq〉 = 0. Hence we get q ∈ M+. Let S be
a normal circle through q and choose p ∈ S with 〈p, q〉 = 0. Then we have
p ∈ M+ and 〈p, Cp〉 = 〈p, Cq〉 = 〈q, Cq〉 = 0 for every C ∈ A(M+). This
implies that S ⊆ M+, a contradiction. Since A ∈ A(M+)\{0} was chosen
arbitrarily we conclude that every matrix in A(M+)\{0} is regular. Hence M
is an isoparametric hypersurface of Clifford type; see [8, Theorem 4.1]. Note
that the inequality l −m− 1 > 0 is satisfied by [5, Section 4, Satz (i)].

Proof of Lemma 4.1 (case m2 = 2m1 − 1). We use the notation of the
proof above. If the linear map ϕA is injective for every A ∈ A(M+)\{0},
then we see precisely as in the preceding proof that M is an isoparametric
hypersurface of Clifford type. Thus we may assume that there exists a matrix
A ∈ A(M+)\{0} such that ϕA is not injective. The arguments used above to
prove that ϕA is always injective for A ∈ A(M+)\{0} for m2 ≥ 2m1 then show
that for m2 = 2m1 − 1 the rank t of A must be equal to 2(m2 + 1).

Without loss of generality we may assume that the quadratic form R2l →
R : v 7→ 〈v,Av〉 takes the maximum 1 on S2l−1. For p ∈ S2l−1 with 〈p,Ap〉
= 1 we then have Ap = p and p ∈ M− by [8, Proposition 3.1 (ii)]. By the
same result the minimum of this quadratic form on S2l−1 is equal to −1. For
an arbitrary point q ∈ S2l−1 ∩ V3(p) we get 〈q, Aq〉 = −〈p,Ap〉 = −1 since
p, q ∈ M− are orthogonal points on a normal circle S and the quadratic form
associated with A vanishes at the four points of S ∩ M+. This shows that
the matrix A acts as −idV3(p) on V3(p) and, by an analogous argument, as the
identity idV3(q) on V3(q). Since t = 2(m2 + 1) and dimV3(p) = dimV3(q) =
m2 + 1 we conclude that A vanishes on the orthogonal complement W of
V3(p)⊕ V3(q) in R2l.

For every x ∈ S2l−1 ∩ V3(p) we see as above that A acts as the identity
idV3(x) on V3(x). Hence we get V3(x) = V3(q) for every x ∈ S2l−1∩V3(p). Thus
the self-adjoint map T (p, x) leaves the subspace W invariant, and T (p, x)|W
has the eigenvalues ±2; see the end of Section 2. Denote by S(W ) the vector
space of self-adjoint linear maps on W . Then we have a well-defined linear
map

ψ : V3(p)→ S(W ) : x 7→ 1
2T (p, x)|W

with the property that ψ(x)2 = idW for every x ∈ S2l−1 ∩ V3(p). In particular,
the linear map ψ is injective, and if we identify the Euclidean vector space
W with R2m1 we see as in [8, proof of Theorem 4.1], that the image of ψ is
generated by a Clifford system Q0, . . . , Qm2 of (2m1 × 2m1)-matrices. Since
m2 = 2m1 − 1, this yields a contradiction to the representation theory of Clif-
ford algebras except for the case (m1,m2) = (1, 1); see [5, Section 3.5]. For this
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special case there exists up to isometry precisely one family of isoparametric
hypersurfaces; see [16]. This family is (homogeneous and) of Clifford type.

Remarks. (i) In the proof above we referred the reader for the case
(m1,m2) = (1, 1) to [16]. Let us now have a closer look at this particular case.
By Lemma 3.5, both focal manifolds may be described by means of quadratic
forms. In order to see this, it suffices to interchange the focal manifolds M+

and M−. Note that this argument does not work for (m1,m2) 6= (1, 1). If
we interchange M+ and M− we also have to interchange the multiplicities
m1 and m2 since we required in Section 2 that M+ and M− be given by
F−1(1) ∩ S2l−1 and F−1(−1) ∩ S2l−1, respectively, where F denotes a Cartan-
Münzner polynomial. Hence both of the inequalities m2 ≥ 2m1 − 1 and m1 ≥
2m2−1 must be satisfied in order to conclude from Lemma 3.5 that both focal
manifolds may be described by means of the vanishing of quadratic forms. This
is only possible for (m1,m2) = (1, 1).

Based on this observation, the proof of Lemma 4.1 can also be completed
independently of [16] for this case. It turns out that one of the focal manifolds,
say M+, can be described by means of a Clifford system as in the introduction,
but there does not exist any quadratic form associated with a regular symmet-
ric matrix that vanishes entirely on the other focal manifold M−. Nevertheless,
for every point p ∈ M+ there exists a symmetric matrix of rank 4 such that
the associated quadratic form takes its maximum at p and vanishes identically
on M−. These statements may be proved by means of calculations based on
orthonormal bases in accordance with Theorem 2.1.

(ii) As we have seen in the introduction, the inequality m2 ≥ 2m1 − 1
is satisfied for all but five possible pairs (m1,m2) with m1≤m2. For (m1,m2)=
(2, 2) or (4, 5) the only known examples are two homogeneous families of
isoparametric hypersurfaces; cf. [5, Section 4.4]. In the first case, the example
is unique; see [14]. Note that it is an immediate consequence of the repre-
sentation theory of Clifford algebras that there does not exist any example of
Clifford type with these multiplicities; see [5, Section 3.5]. For an overview of
isoparametric hypersurfaces of Clifford type with small multiplicities, we refer
the reader to [5, Section 4.3]. In the sequel we want to give some information
on the three remaining cases (3, 4), (6, 9) and (7, 8).

By [5, Sections 5.2, 5.8, 6.1, and, in particular, 6.5], there are (up to isome-
try) precisely two isoparametric families of Clifford type with (m1,m2) = (3, 4).
One of these families is inhomogeneous and has the property that even both
focal manifolds can be described by means of a Clifford system as in the intro-
duction. The other family is homogeneous, and only the lower-dimensional of
the two focal manifolds may be described in this way.

Also for (m1,m2) = (6, 9) there are up to isometry precisely one inho-
mogeneous and one homogeneous isoparametric family of Clifford type; see
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[5, Sections 5.4 and 6.3]. For the inhomogeneous family, only the higher-
dimensional of the two focal manifolds may be described by means of a Clifford
system as in the proof above. In contrast to that, for the homogeneous family
only the lower-dimensional of the two focal manifolds may be described by
means of the vanishing of quadratic forms associated with a Clifford system.

For (m1,m2) = (7, 8) there are even three nonisometric isoparametric fam-
ilies of Clifford type, all of which are inhomogeneous; see [5, Sections 5.4, 5.5,
and, in particular, 6.6]. For one of these examples, only the higher-dimensional
of the two focal manifolds may be described by means of the vanishing of the
quadratic forms associated with a Clifford system. In the other two cases, only
the lower-dimensional of the two focal manifolds may be described in this way.
For one of these two families, both focal manifolds (and not only the isopara-
metric hypersurfaces) are inhomogeneous, while for the other family only the
higher-dimensional focal manifold is inhomogeneous.

(iii) In (ii) we have seen that for (m1,m2) = (3, 4) there exists an isopara-
metric family of Clifford type such that both focal manifolds can be described
by means of a Clifford system as in the proof above. The same property also
occurs for the three pairs (1, 2), (1, 6), and (2, 5) (and does not occur for any
other pair (m1,m2) with m1 ≤ m2); see [5, Section 4.3]. Moreover, for each
of these three pairs there exists (up to isometry) precisely one isoparamet-
ric family of Clifford type. These three examples are homogeneous; see [5,
Section 6.1].
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spheres I, Tôhoku Math. J. 35 (1983), 187–224.

[5] D. Ferus, H. Karcher, and H.-F. Münzner, Cliffordalgebren und neue isoparametrische
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