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Every convex free basic semi-algebraic set
has an LMI representation

By J. William Helton and Scott McCullough

Abstract

The (matricial) solution set of a Linear Matrix Inequality (LMI) is a

convex free basic open semi-algebraic set. The main theorem of this paper is

a converse, each such set arises from some LMI. The result has implications

for semi-definite programming and systems engineering as well as for free

semi-algebraic geometry.

1. Introduction

This article involves noncommutative polynomials, their evaluation on

tuples of matrices, and (in the spirit of extending classical semi-algebraic ge-

ometry to free algebras) noncommutative polynomial inequalities. Here the

focus is on such inequalities whose solution sets are matrix convex.

A recurring theme in related noncommutative settings, such as that of a

subspace of C∗ algebra [Arv69], [Arv72], [Arv08] or in free probability [Voi],

[Voi05] to give two of many examples, is the need to consider the complete

matrix structure afforded by tensoring with n×n matrices (as n ranges over all

positive integers). The resulting theory of operator algebras, systems, spaces,

and matrix convex sets has matured to the point that there are now several

excellent books on the subject including [BLM04], [Pau02], [Pis03].

A precise statement of results appears later in the body of this introduc-

tion. Here, at the beginning, we give a quick indication of the main theorem

starting with basic definitions that will be amplified later in the introduction.

A free basic open semi-algebraic set is defined in terms of a symmetric free

δ × δ matrix-valued polynomial p(x1, · · · , xg). Such a polynomial is a linear

combination of words in freely noncommuting variables (x1, . . . , xg) with coef-

ficients from Mδ, the δ × δ matrices over R. The involution T on words given

by sending a concatenation of letters to the same letters, but in the reverse
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order (for instance (xjx`)
T = x`xj), extends naturally to such polynomials and

p is itself symmetric if pT = p.

Let Sn(Rg) denote the set of g-tuples X = (X1, . . . , Xg) of symmetric

n×n matrices. The polynomial p is naturally evaluated on a tuple X ∈ Sn(Rg)
yielding a value p(X) that is a δ × δ block matrix with n × n matrix entries.

Evaluation at X is compatible with the involution since pT (X) = p(X)T . In

particular, if p is symmetric, then p(X) is a symmetric matrix.

Assuming that p(0) is invertible, the invertibility set Dp(n) of a free sym-

metric polynomial p in dimension n is the component of 0 of the set

{X ∈ Sn(Rg) : p(X) is invertible}.

The invertibility set, Dp, is the sequence of sets (Dp(n)). It is an example of a

free basic open semi-algebraic set.

The sequence Dp is convex if Dp(n) is convex for each n. When p = L is

an affine linear symmetric polynomial with constant term Iδ, the expression

L(X) � 0 is a linear matrix inequality and, as is clear, DL is a sequence of

convex sets.

The main theorem of this article implies if p(0) is invertible and Dp is

bounded, then there is an ` and an affine linear L of size ` with constant term

I` such that Dp(n) = DL(n) for each n if and only if Dp is convex.

This result is the free algebra analog of the preposterous statement

A bounded open convex set C in Rn with algebraic boundary is a polytope.

Since the proof involves matrix convex sets, it is not surprising that our

analysis hinges on the matricial version of the Hahn-Banach Separation The-

orem of Effros and Winkler [EW97], which says that given a point x outside

a matrix convex set C, there is a monic affine linear matrix-valued polynomial

that separates x from C. For a general matrix convex set C, the conclusion

is then that there is a collection, likely infinite, of monic affine linear matrix-

valued polynomials that cut out C. In the case C is matrix convex and also

semi-algebraic, the challenge, successfully dealt with in this paper, is to prove

that there is actually a single monic affine linear matrix-valued polynomial L

which defines C; i.e., DL = Dp.
The article also contains some further results. For instance, a corollary

of the results of Section 8 is that if p satisfies certain irreducibility type hy-

potheses, in addition to the assumption that Dp is bounded and matrix convex,

then p has degree two. In Section 9, implications for free real algebraic geom-

etry, a recently emerging noncommutative analog of the classical subject, are

discussed. Classically projections of semi-algebraic sets are semi-algebraic. A

consequence of our main result is that this projection property is false in the

free case.
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The main result also bears on a free analog of semi-definite programming,

a major branch of convex optimization. Fundamental in semi-definite program-

ming is the class of convex sets C that can be represented with an LMI, as

is the much more general class consisting of projections of LMI representable

sets. Their free analogs behave very differently: the classes of projected LMI

representable sets that are free semi-algebraic and LMI representable sets are

the same. This is shown in Section 9.6.

The remainder of this introduction contains a precise statement of the

main result preceded by the relevant definitions.

1.1. Free polynomials. Let g be a positive integer, which is now fixed for

the remainder of the paper. Let P denote the real free algebra of polynomials

in the freely noncommuting indeterminates x = (x1, . . . , xg). Elements of P
are free polynomials or often just polynomials. Thus, a free polynomial p is a

finite linear combination,

(1.1) p =
∑

pww,

of words w in (x1, . . . , xg) with coefficients pw ∈ R.

There is a natural involution T on P given by

(1.2) pT =
∑

pww
T ,

where, for a word w,

(1.3) w = xj1xj2 · · ·xjn 7→ wT = xjn · · ·xj2xj1 .

A polynomial p is symmetric if it is invariant with respect to the involution.

In particular, xTj = xj , and for this reason the variables are sometimes referred

to as symmetric free variables.

1.2. Evaluations. Let Sn(Rg) denote the set of g-tuples X = (X1, . . . , Xg)

of real symmetric n × n matrices. Let Mn denote the n × n matrices with

real entries. Each X ∈ Sn(Rg) determines a representation eX : P → Mn by

evaluation. Indeed, by linearity, eX is determined by its action on words where

eX(∅) = In and for a nonempty word w as in equation (1.3),

(1.4) eX(w) = Xj1Xj2 · · ·Xjn .

It is natural to write p(X) instead of the more formal eX(p).

Note that p(X) respects the involution in the sense that pT (X) = p(X)T .

In particular, if p is symmetric, then so is p(X). Finally, if π : P → Mn is a

representation that respects the involution, then there is an X ∈ Sn(Rg) such

that π(p) = p(X).
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1.3. Matrix-valued polynomials. Let Pδ×δ′ denote the δ×δ′ matrices with

entries from P. Because row vectors of polynomials figure prominently in this

article, P1×δ is often abbreviated to Pδ.
Evaluation at X ∈ Sn(Rg) naturally extends entrywise to p ∈ Pδ×δ′ with

the result, p(X), a δ × δ′ block matrix with entries from Mn. Up to unitary

equivalence, evaluation at X is conveniently described using tensor product

notation by writing p as a finite linear combination

(1.5) p =
∑
w

pww,

where now the coefficients pw are δ × δ matrices (with real entries), and ob-

serving that

p(X) =
∑

pw ⊗ w(X),

where w(X) = eX(w) is given by equation (1.4).

The involution T naturally extends to Pδ×δ by

pT =
∑
w

pTww
T

for p given by equation (1.5). A polynomial p ∈ Pδ×δ is symmetric if pT = p,

and in this case p(X) = p(X)T .

A simple method of constructing new matrix-valued polynomials from old

ones is from direct sums. For instance, if pj ∈ Pδj×δj for j = 1, 2, then

p1 ⊕ p2 =

Ç
p1 0

0 p2

å
∈ P(δ1+δ2)×(δ1+δ2).

1.4. Invertibility sets. A graded set S is a sequence S = (S(n))∞n=1 where,

for each n, S(n) ⊂ Sn(Rg). The notation S ⊂ S(Rg) indicates that S is a

graded set. The principal component of S, denoted pc[S], is the connected

component of 0 of S; i.e., the graded set pc[S] = (pc[S(n)]).

Suppose p ∈ Pδ×δ is symmetric. In particular, p(0) is a δ × δ symmetric

matrix. Assuming that p(0) is invertible, for each positive integer n, let

Ip(n) = {X ∈ Sn(Rg) : p(X) is invertible} ⊂ Sn(Rg),

and let Ip denote the graded set (Ip(n))∞n=1. The invertibility set Dp of p is

the graded set Dp = pc[Ip]. In Section 9 the graded set Dp is interpreted in

terms of free semi-algebraic geometry.

Remark 1.1. By a simple affine linear change of variable, the point 0 ∈ Rg
can be replaced by λ ∈ Rg. For m > 1, replacing 0 ∈ Sm(Rg) by a fixed

Λ ∈ Sm(Rg) will require an extension of the theory.

Remark 1.2. The graded set Dp is closed with respect to unitary conju-

gation and direct sums - see Lemma 5.1 for the precise statement. However,
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because the matrices involved are symmetric, a property not generally pre-

served under similarity, Dp is not a free set in the sense of Voiculescu [Voi]

[Voi05].

The graded set Dp is convex if each Dp(n) is convex (in the usual sense).

Similarly, Dp is bounded if there is a constant K such for each n and each

X ∈ Dp(n), ‖X‖ =
∑ ‖Xj‖ ≤ K.

The following list of conditions summarizes the usual assumptions on p.

Assumption 1.3. Fix p a δ×δ symmetric matrix of polynomials of degree

d in g free variables. Our standard assumptions are

(i) p(0) is invertible;

(ii) Dp is bounded ; and

(iii) Dp is convex.

1.5. Monic linear pencils. A linear pencil L is an expression of the form

(1.6) L(x) := A0 +A1x1 + · · ·+Agxg

where, for some positive integer `, each Aj is an `× ` symmetric matrix with

real entries. (While linear pencil is standard usage, it is a bit of a misnomer.

When the constant term A0 is nonzero, a linear pencil is actually affine linear.)

The integer ` is the size of the pencil. The pencil is monic if A0 = I, in which

case L is a monic linear pencil.

Since a monic linear pencil (of size `) is an element of P`×`, it evaluates

at a tuple X ∈ Sn(Rg) as

L(X) := I` ⊗ In +A1 ⊗X1 + · · ·+Ag ⊗Xg.

For a square matrix A, the notation A � 0 (A � 0) indicates that the

symmetric matrix A is positive definite (resp. positive semi-definite). From

the form of the monic linear pencil L, it is straightforward to verify that its

invertibility set is the sequence

(DL(n)) = ({X ∈ Sn(Rg) : L(X) � 0})

and that each DL(n) is convex. Moreover,

(DL(n)) = ({X ∈ Sn(Rg) : L(X) � 0}.

A Linear Matrix Inequality, or LMI for short, is an expression of the form

L(X) � 0. LMI’s figure prominently in many branches of engineering and

science. A graded subset C = (C(n)) of the graded set S(Rg) has a (free) LMI

representation if there is a monic linear pencil L such that

C = DL.

The following is the main theorem of this article. A somewhat stronger

version of the result appears later as Theorem 9.5.
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Theorem 1.4. If p satisfies Assumption 1.3, then there is a monic linear

pencil L (of finite size) such that Dp(n) = DL(n) for every n; that is, if

p ∈ Pδ×δ is symmetric, p(0) is invertible, and Dp is bounded, then Dp is

convex if and only if the graded set Dp has an LMI representation.

Results needed for the proof of Theorem 1.4 occupy the paper up through

Section 6. The proof of the theorem itself appears in Section 7. That section

also gives a bound, depending only upon the degree d, the number of vari-

ables g, and the (matrix) size δ of p, on the size of the linear pencil L needed to

represent Dp. Section 8 refines the main theorem by adding irreducibility type

hypotheses on p and concluding that p has degree two. Implications for free

real algebraic geometry and semi-definite programming appear in Section 9.

1.6. Acknowledgment. The authors thank David Zimmermann for his

comments on the paper and are indebted to the referees for their many useful

comments and suggestions which markedly improved the presentation.

2. Preliminaries

From now through Section 7, fix a polynomial p satisfying the conditions

of Assumption 1.3. Thus amongst other things, p is δ × δ matrix-valued, has

degree d, and is a polynomial in g freely noncommuting variables.

This section presents two basic facts for future use. The following lemma

gives a useful criterion for containment in the closure Dp = (Dp(n)) of the

graded set Dp.

Lemma 2.1. Suppose p ∈ Pδ×δ satisfies the conditions of Assumption 1.3

and n is a positive integer. If X ∈ Sn(Rg), then X ∈ Dp(n) if and only if

tX ∈ Dp(n) for all 0 ≤ t < 1.

Proof. First suppose that X ∈ Dp(n). Since Dp(n) is convex, so is Dp(n).

Further, Dp(n) contains 0 ∈ Sn(Rg). Thus, tX ∈ Dp(n) for 0 ≤ t ≤ 1. More-

over, there are only finitely many 0 ≤ s ≤ 1 such that p(sX) is not invertible

because p(0) is invertible and p is a polynomial. Indeed, p(sX) is invertible

if and only if the nonzero polynomial q(t) = det(p(tX)) is not zero at s. If

0 ≤ t < 1 and p(tX) is invertible, then tX ∈ Ip(n). To see that tX is in fact

in Dp(n), we argue by contradiction. Accordingly, suppose tX /∈ Dp(n). In

this case, since Ip(n) is both open and the disjoint union of its connected com-

ponents, tX is contained in some open set that does not meet Dp(n). Thus,

tX /∈ Dp(n), a contradiction. Now tX ∈ Dp(n), and since Dp(n) is convex,

sX ∈ Dp(n) for 0 ≤ s ≤ t. Choosing a sequence 0 < tn < 1 converging to 1

such that p(tnX) is invertible, it now follows that sX ∈ Dp(n) for 0 ≤ s < 1.

The converse is evident. �
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Lemma 2.2. Let C=(C(n)) be a graded set with C(n)⊂Sn(Rg) for each n.

If each C(n) is open and if L is a monic linear pencil, then L is positive definite

on each C(n) if and only if L is positive semi-definite on each C(n).

Proof. Suppose L is positive semi-definite on C(n). If L is not positive

definite on C(n), then there is an an X ∈ C(n) such that L(X) � 0 and L(X)

has a kernel. In particular, there is a unit vector v such that L(X)v = 0. Let

q(t) = 〈L(tX)v, v〉. Thus q is affine linear and q(0) = 1, whereas q(1) = 0.

Hence q(t) < 0 for t > 1 and thus L(tX) 6� 0 for t > 1. On the other hand,

since C(n) is open and X ∈ C(n), there is t > 1 such that tX ∈ C(n), which

contradicts L(tX) � 0. �

3. Dominating points and the boundaries of Dp
There are two notions, both important for what follows, of the boundary

of the graded set Dp. The (topological) boundary of Dp, denoted ∂Dp, is the

graded set (∂Dp(n)) where ∂Dp(n) is the usual topological boundary of Dp(n).

Let ∂̂Dp(n) denote the set of pairs (X, v) where X ∈ ∂Dp(n), the vector v is

in Rδ ⊗Rn, and p(X)v = 0. The assumption v 6= 0 will often be implicit. The

graded set ∂̂Dp = (∂̂Dp(n)) is the detailed boundary of Dp. The use of the

term graded set for ∂̂Dp, while technically different from the use of the term

graded set defined earlier, should cause no confusion.

Given (Xj , vj) ∈ Snj (Rg)× (Rδ ⊗ Rnj ), for j = 1, 2, let

⊕2
j=1(Xj , vj) =

ÇÇ
X1 0

0 X2

å
,

Ç
v1

v2

åå
.

This notion of direct sum clearly extends to a finite list (Xj , vj), j = 1, 2, . . . , s.

A graded set S = (S(n)) where S(n) ⊂ Sn(Rg) × (Rδ ⊗ Rn) respects direct

sums if (Xj , vj) ∈ S(nj), for j = 1, 2, . . . , s, implies ⊕s1(Xj , vj) ∈ S(n), where

n=
∑
nj . It is evident that the graded set ∂̂Dp=(∂̂Dp(n)) respects direct sums.

Let Pδd denote the 1×δ (row) matrices with entries polynomials of degree at

most d. If X ∈ Sn(Rg) and q ∈ Pδd , then q(X) is a linear mapping from Rδ⊗Rn

to Rn. Hence if (X, v) ∈ ∂̂Dp(n), then q(X)v is defined. Let T = (T (n)) denote

a nonempty graded subset of the graded set ∂̂Dp. A point (X, v) ∈ ∂̂Dp(m)

is a dominating point of T if, for a given q ∈ Pδd , q(X)v = 0 implies that

q(Y )w = 0 for every n and (Y,w) ∈ T (n); i.e., if q vanishes at (X, v), then q

vanishes on all of T . Let T∗ denote the dominating points of T . Note T∗ need

not be contained in T .

Given a graded subset T = (T (n))∞n=1 of the graded set ∂̂Dp, let

I(T ) = {q ∈ Pδd : q(X)v = 0 for all (X, v) ∈ T} ⊂ Pδd .

In the special case that T = {(X, v)} is a singleton (so there is an m such that

T (m) has one element and T (n) is the empty set for all other n), the notation
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I(X, v) is used in place of the more cumbersome I({(X, v)}). Note that, in

the case δ = 1, if not for the degree d restriction, the subspace I(T ) would

be a left ideal in P. In any case, I(T ) is a subspace of Pδd . Note that I(T )

contains each row of p and is thus not the zero subspace.

The following lemma follows readily from the definitions.

Lemma 3.1. Let T = (T (n)) be a nonempty graded subset of the graded

set ∂̂Dp. The point (X, v) ∈ ∂̂Dp is a dominating point of T if and only if

I(X, v) ⊂ I(T ).

On the other hand, if (X, v) ∈ T (n), then

I(T ) ⊂ I(X, v).

Thus, if (X, v) ∈ T (n) ∩ T∗(n), then

I(X, v) = I(T ).

Given graded subsets A = (A(n)) and B = (B(n)) of ∂̂Dp, the intersection

of A and B, denoted A ∩ B, is the graded set (A(n) ∩ B(n)). Similarly, A is

nonempty if there is an m so that A(m) is nonempty. The following two lemmas

are key facts about dominating points for graded sets that respect direct sums.

Lemma 3.2. Suppose S = (S(n)) is a nonempty graded subset of the

graded set ∂̂Dp. If S respects direct sums, then there is an m and a (X, v) ∈
S(m) such that

(3.1) I(X, v) = I(S).

Hence S ∩ S∗ is nonempty.

Proof. First note that

I(S) =
⋂
{ I(Y,w) : (Y,w) ∈ S}.

Thus, since each I(Y,w) is a subspace of the finite dimensional vector space

Pδd , there exists an s and (Yj , wj) ∈ S(nj) for j = 1, . . . , s such that

I(S) = ∩sj=1I(Yj , wj).

Let (X, v) = ⊕(Yj , wj). Then (X, v) ∈ S(m), where m =
∑
nj , and

�(3.2) I(X, v) = ∩sj=1I(Yj , wj) = I(S).

Lemma 3.3. Suppose S = (S(n)) is a graded subset of the graded set ∂̂Dp
that respects direct sums, and suppose q ∈ Pδd . If (X, v) ∈ S(n) ∩ S∗(n) and

(Y,w) ∈ S(m) ∩ S∗(m), then q(X)v = 0 if and only if q(Y )w = 0; that is, q

either vanishes on the whole graded set S ∩ S∗ = (S(n) ∩ S∗(n)) or none of

S ∩ S∗.
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Proof. From Lemma 3.1 (twice),

I(X, v) = I(S) = I(Y,w). �

This section closes with the following observation. A graded subset Z =

(Z(n)) of the graded set ∂̂Dp respects simultaneous unitary conjugation if, for

each n, (X, v) ∈ Z(n) and n× n unitary U ,

(3.3) UT (X, v)U := ((UTX1U, . . . , U
TXgU), UT v) ∈ Z(n).

Lemma 3.4. If I is a subset of Pδd , then the graded set Z(I) = (Z(I)(n))

defined by

Z(I)(n) = {(X, v) ∈ ∂̂Dp(n) : f(X)v = 0 for all f ∈ I}

respects both direct sums and unitary conjugations.

Further, if I ⊂ J ⊂ Pδd , then Z(I)(n) ⊃ Z(J)(n) for every n; that is,

Z(I) ⊃ Z(J).

Proof. The first statement is evident if I contains a single q ∈ Pδd . The

general result follows by observing that the properties of respecting direct sums

and unitary conjugations are preserved under (termwise) intersection of graded

sets.

The statement about inclusions is readily verified. �

4. Closure with respect to a subspace of polynomials

In this section a canonical closure operation on graded subsets W =

(W (n)) of the graded set ∂̂Dp is introduced and its properties developed. Re-

call that the positive integers d, δ, and g have all been fixed (by p) and that

Pδd denotes the 1× δ matrices whose entries are free polynomials of degree at

most d in g freely noncommuting symmetric variables.

The Pδd-closure of a nonempty graded subset W = (W (n)) of ∂̂Dp is the

graded set Wz = (Wz(n)) where,

Wz(n) := {(X, v) ∈ ∂̂Dp(n) : f(X)v = 0 for every f ∈ I(W )}.

In particular, to say W is Pδd-closed means Wz = W .

Lemma 4.1. Let W = (W (n)) denote a nonempty graded subset of ∂̂Dp.
(i) In the notation of Lemma 3.4, Wz = Z(I(W ));

(ii) If (X, v) ∈ ∂̂Dp(n), then (X, v) ∈Wz(n) if and only if I(X, v) ⊃ I(W );

(iii) I(W ) = I(Wz); and

(iv) If U = (U(n)) is a graded subset of ∂̂Dp and I(U) = I(W ), then U ⊂Wz ;

that is, U(n) ⊂Wz(n) for every n.

Note that item (iv) says that Wz is the largest graded subset of ∂̂Dp such

that I(Wz) = I(W ).
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Proof. The first item is evident. To prove item (ii), suppose (X, v) ∈
Wz(n). If q ∈ I(W ), then q(X)v = 0 and hence q ∈ I(X, v). Thus, I(W ) ⊂
I(X, v). Conversely, suppose (X, v) ∈ ∂̂Dp(n) and I(X, v) ⊃ I(W ). If q ∈
I(W ), then q ∈ I(X, v) and hence q(X)v = 0. Hence (X, v) ∈Wz(n).

Since (X, v) ∈Wz implies I(X, v) ⊃ I(W ), it follows that I(Wz) ⊃ I(W ).

On the other hand, since W ⊂ Wz, the inclusion I(W ) ⊃ I(Wz) and the

equality I(W ) = I(Wz) follows.

Finally, suppose I(U) = I(W ) and let (X, v) ∈ U be given. If q ∈I(W ),

then q∈I(U) and hence q(X)v=0. Thus, (X, v)∈Wz and hence U⊂Wz. �

The following lemma collects basic facts about the Pδd-closure operation.

The statement and proof extensively use the following conventions. Given

graded subsets A = (A(n)) and B = (B(n)) of the graded set ∂̂Dp, the notation

A ⊂ B means A(n) ⊂ B(n) for each n. Similarly, the notation A ( B means

A ⊂ B and there is an m so that A(m) ( B(m).

Lemma 4.2. Suppose ∂̂Dp ⊃ A,B are nonempty graded sets that respect

direct sums.

(i) A ⊂ Az ;
(ii) If A ⊃ B, then I(A) ⊂ I(B);

(iii) If I(A) ⊂ I(B), then Az ⊃ Bz ⊃ B;

(iv) If B ⊂ A, then Bz ⊂ Az ;
(v) If B is Pδd-closed and B ( A, then I(A) ( I(B);

(vi) If A1 ⊃ A2 ⊃ · · · is a decreasing sequence of nonempty Pδd-closed sets,

then there is an m such that Am = A` for all ` ≥ m; and

(vii) A nonempty collection T of nonempty Pδd-closed subsets of ∂̂Dp contains

a minimal element ; i.e., there exists a set T ∈ T such that if A ⊂ T and

A ∈ T, then A = T .

Proof. The first four items are obvious. To prove (v), note that by (ii),

I(A) ⊂ I(B). On the other hand, if I(A) = I(B), then by (iii), Az = Bz. But

then, because B is Pδd closed,

Bz = B ( A ⊂ Az = Bz,

a contradiction.

Item (vi) holds because, by (v), I(A1) ⊂ I(A2) ⊂ · · · is an increasing

nest of subspaces of the finite dimensional vector space Pδd . Thus there is an

m such that I(A`) = I(Am) for all ` ≥ m. Using (iii) twice and the fact that

each A` is Pδd-closed, it follows that A` = Am for ` ≥ m.

To prove (vii), choose A1 ∈ T. If A1 is not minimal, then there exists

A2 ∈ T such that A1 ) A2. Continuing in this fashion, eventually produces a
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minimal set T as the alternative is a nested strictly decreasing sequence

A1 ) A2 ) A3 ) · · ·

from T, which contradicts (vi). �

Facts about the relation between dominating points and Pd-closures are

collected in the next lemma. Recall the characterization of dominating points

given in Lemma 3.1. If A is a graded subset of ∂̂Dp, let A∗ denote the graded

set A∗ = (A∗(n)). Recall, if B is also a graded set, then A ∩ B is the graded

set (A(n) ∩B(n)).

Lemma 4.3. Suppose ∂̂Dp ⊃ A,B are nonempty graded sets that respect

direct sums.

(i) If A ⊃ B, then A∗ ⊂ B∗;
(ii) A∗ = (Az)∗;

(iii) B ∩B∗ is nonempty ;

(iv) Moreover,

(4.1) B ∩B∗ ⊂ {(X, v) ∈ ∂̂Dp : I(X, v) = I(B)} and ;

(v) If A is Pδd closed, then

A ∩A∗ = {(X, v) ∈ ∂̂Dp : I(X, v) = I(A)}.

Hence for any B,

Bz ∩B∗ = {(X, v) ∈ ∂̂Dp : I(X, v) = I(B)}.

Remark 4.4. Note that (iii) is Lemma 3.2 and (iv) is part of Lemma 3.1.

Proof. To prove item (i) observe, if (X, v) ∈ A∗(n), then, by Lemma 3.1

and Lemma 4.2(ii), I(X, v) ⊂ I(A) ⊂ I(B). Thus, by another application of

Lemma 3.1, (X, v) ∈ B∗(n).

By Lemma 4.2(i), A ⊂ Az. Thus, by part (i) of this lemma, A∗ ⊃ (Az)∗.

On the other hand, if (X, v) ∈ A∗(n), then, in view of Lemma 4.1(iii),

I(X, v) ⊂ I(A) = I(Az)

and thus (X, v) ∈ (Az)∗(n). Hence A∗ ⊂ (Az)∗ and item (ii) is proved.

It remains to prove item (v). One inclusion follows from (iv). To prove the

other inclusion, suppose A is Pδd-closed, (X, v) ∈ ∂̂Dp, and I(X, v) = I(A).

Since I(X, v) ⊃ I(A) and A is Pδd-closed, item (ii) of Lemma 4.1 implies

(X, v) ∈ A. On the other hand, (X, v) ∈ A∗ since I(X, v) ⊂ I(A). Thus the

reverse inclusion holds and the proof of the first part of (v) is complete. The

second part of (v) follows from the first part and item (iii) of Lemma 4.1. �
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For a monic linear pencil L, let i(L) denote the graded subset (i(L)(n))

of the graded set ∂̂Dp defined by

i(L)(n) := {(Y,w) ∈ ∂̂Dp(n) : L(Y ) is invertible}.

If S is a graded subset of ∂̂Dp, then L is said to be singular on S if L(X) is

not invertible for each n and (X, v) ∈ S(n); i.e., if S(n) ∩ i(L)(n) is empty for

each n.

Proposition 4.5. Let S = (S(n)) be a nonempty graded subset of the

graded set ∂̂Dp. Suppose S respects direct sums and L is a monic linear pencil.

If

(i) L is singular on S∗; and

(ii) ∅ 6= i(L) ⊂ S,

then i(L)z is properly contained in Sz ; i.e., there is an m such that

i(L)z(m) ( Sz(m).

Proof. Item (ii) and Lemma 4.2(iv) imply i(L)z ⊂ Sz. Arguing by con-

tradiction, suppose that i(L)z = Sz. Then, from Lemma 4.3(ii) (twice),

i(L) ∩ i(L)∗ = i(L) ∩ (i(L)z)∗ = i(L) ∩ (Sz)∗ = i(L) ∩ S∗.

On the other hand, since i(L) = (i(L)(n)) is a nonempty graded subset of

∂̂Dp that respects direct sums, by Lemma 3.2, there is an m and an (X, v) ∈
i(L)(m) ∩ i(L)∗(m). Hence there is an (X, v) ∈ i(L)(m) ∩ S∗(m). But then

L(X) is invertible, since (X, v) ∈ i(L), and on the other hand, by (i), L(X)

is singular because (X, v) ∈ S∗(m). This contradiction proves the indicated

inclusion is proper. �

5. Convexity and the invertibility set

This section contains proofs of two facts about the convex graded set Dp.
First, it is in fact an open matrix convex set (see Definition 5.4 below), and

second, membership in Dp and its boundary is determined by compressions to

subspaces of dimension at most ν = δ
∑d

0 g
j . (Recall, p is δ × δ matrix-valued,

d is the degree of p, and g is the number of variables.)

5.1. Matrix convexity. A graded subset S = (S(n)) of S(Rg) respects si-

multaneous unitary conjugation if for each n, X ∈ S(n) and each n×n unitary

matrix,

UTXU = (UTX1U, . . . , U
TXgU) ∈ S(n).

This is analogous to (3.3). The following lemma applies to any Dq, whether

convex or not. The second item has already been used repeatedly.

Lemma 5.1. Suppose q ∈ Pr×r is symmetric and q(0) is invertible.
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(i) The graded set Dq respects simultaneous unitary conjugation ; and

(ii) Dq respects direct sums.

Proof. The first item follows from the fact that q(UTXU) = UT q(X)U

and the second from q(X ⊕ Y ) = q(X)⊕ q(Y ). �

Recall, by definition, Dp = (Dp(n)) is convex if each Dp(n) is convex.

Lemma 5.2. If Dp is convex, X ∈ Sn(Rg), Y ∈ Sm(Rg), and X ⊕ Y ∈
Dp(n+m), then X ∈ Dp(n) and Y ∈ Dp(m).

Proof. Let Z = X ⊕ Y ∈ Dp(n + m). By convexity, tZ ∈ Dp(n + m) for

0 ≤ t ≤ 1. It follows that p(tX) is invertible for 0 ≤ t ≤ 1 and so there is a

path from 0 to X lying in Dp(n). Thus X ∈ Dp(n). Likewise for Y . �

Remark 5.3. It is not clear if Lemma 5.2 remains true with the weaker

hypothesis that the closure of Dp is convex.

Definition 5.4. For the present purposes a graded set C = (C(n)), where

each C(n) ⊂ Sn(Rg), is a bounded open matrix convex set if

(i) each C(m) is open and contains 0 = (0, . . . , 0) ∈ Sm(Rg);
(ii) C respects direct sums;

(iii) C respects simultaneous conjugation with contractions: if Y ∈ C(m) and

F is an m× k contraction, then

F TY F = (F TY1F, . . . , F
TYgF ) ∈ C(k); and

(iv) each C(m) is convex and bounded.

There are some harmless redundancies in the conditions above. It is easy

to see that the convexity of C(m) actually follows from items (ii) and (iii).

Indeed, given X,Y ∈ C(n), choose F to be the 2n× n matrix

F =
1√
2

Ç
In
In

å
and note that

Xj + Yj
2

= F T
Ç
Xj 0

0 Yj

å
F for each j.

Similarly, if it assumed that C is not empty, then that 0 ∈ C(n) for all n follows

from (iii) by choosing F = 0.

An immediate consequence of item (iii) is, if X ∈ Sn(Rg), Y ∈ Sm(Rg)
and X ⊕ Y ∈ C(n+m), then Y ∈ C(m).

Theorem 5.5. If p satisfies the conditions of Assumption 1.3, then Dp is

a bounded open matrix convex set.



992 J. WILLIAM HELTON and SCOTT MCCULLOUGH

Proof. That Dp is closed with respect to direct sums is part of Lemma 5.1

(and does not depend upon convexity or boundedness).

To prove that Dp is closed with respect to simultaneous conjugation by

contractions, suppose that X ∈ Dp(n) and F is a given n× k contraction. Let

U denote the Julia matrix (of F ),

U =

(
F (In − FF T )

1
2

−(Ik − F TF )
1
2 F T

)
.

Routine calculations show U is unitary.

Let 0 denote the g-tuple of zero matrices of size k × k. Then, since X ∈
Dp(n) and 0 ∈ Dp(k), the direct sum X ⊕ 0 is in Dp(n + k). Since Dp(n + k)

is closed with respect to unitary conjugation, both the g-tuples of matrices

Y = UT
Ç
X 0

0 0

å
U,

Z =

Ç
I 0

0 −I

å
Y

Ç
I 0

0 −I

å
are in Dp(n+ k). Using the convexity assumption on Dp(n+ k),

1

2
(Y + Z) =

Ç
F TXF 0

0 (I − FF T )
1
2X(I − FF T )

1
2

å
is in Dp(n+ k). An application of Lemma 5.2 implies F TXF ∈ Dp(n).

By hypothesis, Dp is bounded. �

5.2. Compressions. Recall Pδd denotes the 1 × δ matrices whose entries

are free polynomials of degree at most d in g freely noncommuting variables.

Given (X, v) ∈ Sn(Rg)× (Rδ ⊗ Rn), define the subspace M =M(X, v) of Rn
by

(5.1) M := {q(X)v : q ∈ Pδd} ⊂ Rn.

Explicitly, v is a column vector of length δ with entries from Rn and

(5.2) q(X)v =
Ä
q1(X) . . . qδ(X)

äÜv1
...

vδ

ê
=
∑

qj(X)vj ,

where each qj is free polynomial of degree at most d.

Let PM denote the projection of Rn onto M. Consistent with previous

usage, the notation PMX|M is shorthand for (PMX1|M, . . . , PMXg|M). The

integer ν = δ
∑d
j=0 g

j , the dimension of the vector space Pδd , is an upper bound

for the dimension of the vector space M.
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Lemma 5.6. Suppose p satisfies the hypotheses of Assumption 1.3 and n is

a positive integer. If (X, v) ∈ ∂̂Dp(n) and µ is the dimension ofM =M(X, v),

then (PMX|M, v) ∈ ∂̂Dp(µ). In fact, tPMX|M ∈ Dp(µ) for 0 ≤ t < 1 and

p(PMX|M)v = 0.

Proof. From Lemma 2.1, tX ∈ Dp(n) for 0 ≤ t < 1. Let V denote the

inclusion of M into Rn. Since V is a contraction and, by Theorem 5.5, Dp is

a (open) matrix convex set, tPMX|M = V T tXV ∈ Dp(µ).

Writing v as in equation (5.2), for any word w of length at most d and

any 1 ≤ j ≤ δ,

w(PMX|M)vj = PMw(X)|Mvj = PMw(X)vj .

Hence,

p(PMX|M)v = (Iδ ⊗ PM)p(X)v = 0. �

6. Separating monic linear pencils

This section develops a refinement of the matricial Hahn-Banach Sepa-

ration Theorem of Effros-Winkler for the graded set Dp, Proposition 6.8 in

Section 6.3. A version of the Effros-Winkler Separation Theorem is the topic

of the first subsection.

6.1. A version of the Effros-Winkler theorem. This subsection contains a

proof of the separation theorem of Effros and Winkler [EW97] in the special

case of certain matrix convex subsets of S(Rg) = (Sn(Rg))∞n=1. The special-

ization makes the proof of Proposition 6.4, which is applied in the following

subsection, simpler than that of the strictly more general version in [EW97].

On the other hand, Proposition 6.4 is not explicitly covered by the results in

[EW97].

Given a positive integer n, let Tn denote the positive semi-definite n × n
matrices (with real entries) of trace one. Each T ∈ Tn corresponds to a state

on Mn, the n× n matrices, via the trace

Mn 3 A 7→ tr(AT ).

Note that Tn is a convex, compact subset of Sn, the symmetric n×n matrices.

The following lemma is a version of Lemma 5.2 from [EW]. An affine linear

mapping f : Sn → R is a function of the form f(x) = af + λf (x), where λf is

linear and af ∈ R.

Lemma 6.1. Suppose F is a convex set of affine linear mappings f : Sn
→ R. If for each f ∈ F there is a T ∈ Tn such that f(T ) ≥ 0, then there is a

T ∈ Tn such that f(T) ≥ 0 for every f ∈ F .
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Proof. For f ∈ F , let

Bf = {T ∈ Tn : f(T ) ≥ 0} ⊂ Tn.

By hypothesis, each Bf is nonempty and it suffices to prove that

∩f∈FBf 6= ∅.

Since each Bf is compact, it suffices to prove that the collection {Bf : f ∈ F}
has the finite intersection property. Accordingly, let f1, . . . , fm ∈ F be given.

Arguing by contradiction, suppose

∩mj=1Bfj = ∅.

Define F : Sn → Rm by

F (T ) = (f1(T ), . . . , fm(T )).

Then F (Tn) is both convex and compact because Tn is both convex and com-

pact and each fj , and hence F , is affine linear. Moreover, F (Tn) does not

intersect

Rm+ = {x = (x1, . . . , xm) : xj ≥ 0 for each j}.

Hence there is a linear functional λ : Rm → R such that λ(F (Tn)) < 0 and

λ(Rm+ ) ≥ 0. There exists λj such that λ(x) =
∑
λjxj . Since λ(Rm+ ) ≥ 0, it

follows that each λj ≥ 0. Since λ 6= 0, for at least one k, λk > 0. Without loss

of generality, it may be assumed that
∑
λj = 1. Let

f =
∑

λjfj .

Since F is convex, it follows that f ∈ F . On the other hand, f(T ) = λ(F (T )).

Hence if T ∈ Tn, then f(T ) < 0. Thus, for this f there does not exist a T ∈ Tn
such that f(T ) ≥ 0, a contradiction that completes the proof. �

Lemma 6.2. Let C = (C(n)) denote an open matrix convex subset of the

graded set S(Rg). Let n and a linear functional Λ : Sn(Rg) → R be given. If

Λ(X) ≤ 1 for each X ∈ C(n), then there is a T ∈ Tn such that for each m,

each Y ∈ C(m), and each m× n contraction (matrix) C ,

Λ(CTY C) ≤ tr(CTCT ).

Proof. Given a positive integer m, a tuple Y in C(m), and an m × n

contraction matrix C, define fY,C : Sn → R by

fY,C(T ) = tr(CTCT )− Λ(CTY C).

Now we show that the collection F = {fY,C : Y,C} is a convex set. Start

with a positive integer s, nonnegative numbers λ1, . . . , λs with
∑
λj = 1, and

with (Yj , Cj) for j = 1, . . . , s where Yj ∈ C(mj) and Cj are mj ×n contraction



CONVEX FREE SEMI-ALGEBRAIC SETS 995

matrices. Let Z = ⊕Yj and let F denote the (block) column matrix with

entries
√
λjCj . Then Z ∈ C(m), where m =

∑
mj and

F TF =
∑

λjC
T
j Cj �

∑
λjI = I.

By definition, ∑
λjC

T
j YjCj = F TZF

and ∑
λjtr(CjTC

T
j ) = tr(FTF T ).

Therefore, ∑
λjfYj ,Cj (T ) = fZ,F (T ).

If C has (operator) norm one, choose T = γγT where γ is a unit vector

such that

‖Cγ‖ = ‖C‖ = 1.

It follows that γγT ∈ Tn and

fY,C(γγT ) = ‖C‖2 − Λ(CTY C) = 1− Λ(CTY C).

Since CTY C ∈ C(n), the right-hand side above is nonnegative. If the contrac-

tion C does not have norm 1, but is not zero, a simple scaling argument shows

that fY,C(γγT ) ≥ 0 still. Consequently, for each fY,C there is a T ∈ Tn such

that fY,C(T ) ≥ 0. From Lemma 6.1, there is a T ∈ Tn such that fY,C(T) ≥ 0

for every Y and C. �

Given ε > 0, the free ε-neighborhood of 0, denoted Nε, is the graded set

(Nε(n))∞n=1 where

Nε(n) = {X ∈ Sn(Rg) :
∑
‖Xj‖ < ε}.

Lemma 6.3. If p satisfies the conditions of Assumption 1.3, then Dp con-

tains an ε > 0 neighborhood of 0; i.e., there is an ε > 0 such that Nε(n) ⊂
Dp(n) for each n.

Moreover, if the monic linear pencil L = I +
∑
Ajxj is positive definite

on Dp, then ‖Aj‖ ≤ 1
ε for each j.

Proof. Write p as in equation (1.5). Thus each pw is a δ × δ matrix. Let

M denote the maximum of {‖pw‖ : 1 ≤ |w| ≤ d}. Let τ =
∑d

1 g
j . Thus τ is

the number of words w with 1 ≤ |w| ≤ d.

Let 0 < ∆ denote the minimum of {|λ| : λ is an eigenvalue of p(0)}.
Choose ε = min{1, ∆

τ(M+1)}.
Let X ∈ Sn(Rg) be given. If ‖Xj‖ < ε for 1 ≤ j ≤ g, then ‖w(tX)‖ ≤

∆
τ(M+1) for nonempty words w and 0 ≤ t ≤ 1. Hence,

‖
∑

1≤|w|≤d
pw ⊗ w(tX)‖ ≤

∑
1≤|w|≤d

‖pw‖ ‖w(tX)‖ < ∆.
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It follows that p(tX) is invertible for 0 ≤ t ≤ 1 and thus X ∈ Dp(n). Conse-

quently, Dp(n) contains Nε(n).

Now suppose L is a monic linear pencil that is positive definite on Dp
and thus on Nε. For 0 ≤ t < ε, the points ±tej are in Nε(1) and hence

L(±tej) = I ± tAj � 0. It follows that ±Aj � 1
εI and thus ‖Aj‖ ≤ 1

ε . �

Proposition 6.4. Let C = (C(n)) denote a bounded open matrix convex

subset of the graded set S(Rg) that contains a free ε-neighborhood of 0. If Xb ∈
Sn(Rg) is in the boundary of C(n), then there is a monic linear pencil L (of

size n) such that L(Y ) � 0 for all m and Y ∈ C(m) and such that L(Xb) is

singular.

Proof. By the usual Hahn-Banach Separation Theorem and the assump-

tion that C(n) is open and contains an ε-neighborhood of 0, there is a linear

functional Λ : Sn(Rg)→ R such that Λ(Xb) = 1 > Λ(C(n)).

From Lemma 6.2 there is a positive semi-definite n× n matrix T of trace

one such that

(6.1) tr(CTCT )− Λ(CTY C) ≥ 0

for each m, each m×n contraction C, and each Y ∈ C(m). Note this inequality

is sharp in the sense that

(6.2) tr(T )− Λ(Xb) = 0.

The rest of the proof amounts to expressing (6.1) in a concrete way in terms

of a monic linear pencil.

Let {e1, . . . , eg} denote the standard orthonormal basis for Rg. Given 1 ≤
` ≤ g, define a bilinear form on Rn by

B`(c, d) =
1

2
Λ((cdT + dcT )⊗ e`)

for c, d ∈ Rn. There is a unique real symmetric n× n matrix B` such that

B`(c, d) = 〈B`c, d〉.
Let LB denote the linear polynomial LB(x) =

∑g
1 Bjxj . Fix a positive

integer m and let {e1, . . . , em} denote the standard orthonormal basis for Rm.

Let Y = (Y1, . . . , Yg) ∈ C(m) be given and consider LB(Y ). Given a vector

γ =
∑m
j=1 γj ⊗ ej contained in Rn ⊗ Rm, compute

〈LB(Y )γ, γ〉 =
∑
i,j

∑
`

〈B`γj , γi〉〈Y`ej , ei〉

=
1

2

∑
i,j

∑
`

Λ((γjγ
T
i + γiγ

T
j )⊗ e`)〈Y`ej , ei〉

=Λ(
∑
i,j

γi(
∑
`

〈Y`ej , ei〉 ⊗ e`)γ
T
j )

=Λ(ΓY ΓT ),
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where Γ is the matrix with j-th column γj . Using equation (6.1)

Λ(ΓY ΓT ) ≤tr(ΓTTΓ)

=
∑
〈Tγj , γj〉

=
∑
〈(T ⊗ I)

∑
j

γj ⊗ ej ,
∑
k

γk ⊗ ek〉

=〈(T ⊗ I)γ, γ〉.

Thus, the linear pencil T −LB defined by (T −LB)(x) = T −∑Bjxj satisfies

(6.3) [T − LB](Y ) � 0

for every m and Y ∈ C(m).

Since C contains the ε-neighborhood of 0, it contains ± ε
2ej ∈ Rg. Hence,

0 � T −±ε
2
LB(ej) = T −±ε

2
Bj .

Thus, while T need not be invertible, it does satisfy −T � ε
2Bj � T for each

j and hence, restricting to the range of T (kernel of T T ), it can be assumed

(passing to a space of smaller dimension if necessary) that T is invertible.

Finally, multiplying left and right by T−
1
2 produces a linear polynomial L(x) =∑

j Ajxj such that (I − L)(Y ) � 0 if and only if (T − LB)(Y ) � 0.

On the other hand, computing as above, (6.2) becomes

〈(T − LB)(Xb)e, e〉 = 0 with e =
∑

ej ⊗ ej .

SinceXb is in the closure of C(n), (T−LB)(Xb) � 0. Thus (T−LB)(Xb)e = 0,

and since [T ⊗ I]e 6= 0, it follows that (I −L)(Xb) is singular. Set L = I −L.

Finally, the assumption that C is open implies that L is in fact positive

definite, not just positive semi-definite, on C. The proof of this statement is

very similar to that of Lemma 2.2. The details are omitted. �

6.2. Effros-Winkler and invertibility sets. The following lemma is both a

refinement and specialization of the free Hahn-Banach Separation Theorem of

Effros and Winkler [EW97]. It is specialized to convex bounded sets Dp =

(Dp(n)), and refined in that it separates a point on the boundary of Dp(m)

from Dp.

Lemma 6.5. Suppose p satisfies the conditions of Assumption 1.3. If

X ∈ ∂Dp(m), then there exists a monic linear pencil L of size m such that L

is positive definite on each Dp(n) and L(X) is singular.

Proof. By Theorem 5.5, Dp is a bounded open matrix convex set. By

Lemma 6.3, Dp contains a free ε-neighborhood of 0. Hence an application of

Proposition 6.4 proves the lemma. �
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The following is a more quantitative version of Lemma 6.5. Recall ν =

δ
∑d

0 g
j .

Lemma 6.6. Suppose p satisfies Assumption 1.3. If (X, v) ∈ ∂̂Dp(m),

then there exists a monic linear pencil L of size ` ≤ ν, where ` is the dimension

of

M =M(X, v) = {q(X)v : q ∈ Pδd} ⊂ Rm,
and a nonzero vector w ∈ R` ⊗M such that L is positive definite on each

Dp(n) and L(X)w = 0.

Remark 6.7. In terms of {e1, . . . , e`}, the standard basis for R`, there

exists m1, . . . ,m` ∈ M such that w =
∑
eα ⊗mα. From the definition of M,

there thus exists qα ∈ Pδd such that mα = qα(X)v and hence,

w =
∑

eα ⊗ qα(X)v.

Proof. Let Y = PMX|M. By Lemma 5.6, (Y, v) ∈ ∂̂Dp(`). By Lemma 6.5,

there exists a monic linear pencil L of size ` such that L is positive definite on

each Dp(n) and L(Y ) is singular. Hence there is a nonzero w ∈ R` ⊗M such

that L(Y )w = 0. Since

〈L(X)w,w〉 =〈(I` ⊗ PM) L(X) (I` ⊗ PM)w,w〉
=〈L(Y )w,w〉
=0,

and since L(X) � 0, the conclusion L(X)w = 0 follows. �

6.3. Dominating points and separation. Proposition 6.8 relates dominat-

ing points to the separating monic linear pencils produced by Lemma 6.6. It

is the main result of this section and the last ingredient needed for the proof

of Theorem 1.4 in the next section.

Let |w| denote the length of a word w. By convention, |∅| = 0.

Proposition 6.8. Suppose p satisfies Assumption 1.3. If S = (S(n)) is

a nonempty graded subset of the graded set ∂̂Dp that respects direct sums, then

there exists a monic linear pencil L that is positive definite on each Dp(n) and

singular on S ∩ S∗ = (S(n) ∩ S∗(n)); that is, if X ∈ Dp(n), then L(X) � 0,

and if (X, v) ∈ S(n) ∩ S∗(n), then L(X) is singular. Further, the size of L

can be chosen to be at most the maximum of the dimensions of the subspaces

{q(Y )w : q ∈ Pδd} over (Y,w) ∈ S and is therefore at most dim Pδd = ν.

Proof. Let µ denote the maximum of the dimensions of the subspaces

{q(Y )w : q ∈ Pδd} for (Y,w) ∈ S.

Given (X, v) ∈ S(m), let ΛX denote the set of monic linear pencils L of size

µ that are both positive definite on each Dp(n) and for which L(X) is singular.
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By identifying L = I +
∑
Ajxj with the tuple A = (A1, . . . , Ag) ∈ Sµ(Rg), the

collection ΛX may be viewed as a subset of a finite dimensional vector space.

By Lemma 6.6, each ΛX is nonempty. By Lemma 6.3, each ΛX is bounded.

If a sequence from ΛX converges to the monic linear pencil L, then L(Y ) � 0

for each n and Y ∈ Dp(n). By an application of Lemma 2.2, it follows that L is

in fact positive definite on each Dp(n). Hence ΛX is closed and thus compact.

Given an s and (Xj , vj) ∈ S(mj) ∩ S∗(mj) ⊂ ∂̂Dp(mj) for 1 ≤ j ≤ s, let

(W,u) = ⊕(Xj , vj). Since S is closed with respect to direct sums, (W,u) ∈
S(m), where m =

∑
mj .

Concordant with earlier usage, let

M(W,u) := {q(W )u : q ∈ Pδd }.

By Lemma 6.6, there is a monic linear pencil L = I+
∑
Ajxj of size µ such that

L is positive definite on each Dp(n) and a nonzero vector γ ∈ Rµ ⊗M(W,u)

such that L(W )γ = 0. From the definitions of M(W,u) and Rµ ⊗M(W,u),

there exists qα ∈ Pδd for 1 ≤ α ≤ µ, such that

γ =
µ∑

α=1

eα ⊗ qα(W )u.

Let

q =
µ∑

α=1

eα ⊗ qα =

Ü
q1

...

qµ

ê
.

Thus q is a µ× δ matrix of polynomials of degree at most d; that is, q ∈ Pµ×δd .

Further,
γ = q(W )u.

Up to unitary equivalence (the canonical shuffle),

L(W )γ = L(W )q(W )u =

Ü
L(X1)q(X1)v1

...

L(Xs)q(Xs)vµ

ê
.

Let

γj = q(Xj)vj =

à
q1(Xj)vj

q2(Xj)vj

...

qµ(Xj)vj

í
.

Since L(W )γ = 0,

(6.4) L(Xj)γj = 0

for each 1 ≤ j ≤ s.
To prove that each γj 6= 0, we now invoke the hypothesis that each

(Xj , vj) ∈ S(mj) ∩ S∗(mj). If γk = 0 (for some k), then qα(Xk)vk = 0 for
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each α. By Lemma 3.3, for a fixed α, either qα(Xj)vj = 0 for every j or

qα(Xj)vj 6= 0 for every j. Since qα(Xk)vk = 0, it follows that qα(Xj)vj = 0

for every j and every α. Thus each γj = 0 and hence γ = 0, a contradiction.

Since, for each j, we have γj 6= 0, but L(Xj)γj = 0, it follows that

L ∈ ΛXj . This proves

∩sj=1ΛXj 6= ∅.
Consequently, the collection {ΛX : (X, v) ∈ S(n) ∩ S∗(n), 1 ≤ n} of compact

sets has the finite intersection property. Hence the full intersection is nonempty

and any L in this intersection is positive definite on Dp and singular on all of

S(n) ∩ S∗(n) for each n (meaning, for each n, if (X, v) ∈ S(n) ∩ S∗(n), then

L(X) is singular). �

Corollary 6.9. If p satisfies Assumption 1.3, then the graded set (∂̂Dp)∗
= (∂̂Dp(n)∗) is nonempty and there is a monic linear pencil L that is positive

definite on Dp and singular on (∂̂Dp)∗; that is, for each n, if X ∈ Dp(n) then

L(X) � 0, and if (X, v) ∈ (∂̂Dp)∗(n), then L(X) is singular.

Proof. Note ∂̂Dp ∩ (∂̂Dp)∗ = (∂̂Dp)∗ and apply Proposition 6.8 with S =

∂̂Dp. �

7. Theorem 1.4

Theorem 1.4 is an immediate consequence of the following result.

Theorem 7.1. Given p satisfying Assumption 1.3, there exists a monic

linear pencil L such that L is positive definite on each Dp(n) and L(X) has a

kernel for every n and X ∈ ∂Dp(n). Hence the graded sets Dp = (Dp(n)) and

DL = (DL(n)) = ({X ∈ Sn(Rg) : L(X) � 0}) are equal.

Proof. Recall, for L, a monic linear pencil, i(L) = (i(L)(n)) is the graded

set defined by

i(L)(n) := {(Y,w) ∈ ∂̂Dp(n) : L(Y ) is invertible}.

We argue by contradiction. Accordingly, suppose for each monic linear pencil

L that is positive definite on Dp, the graded set i(L) is nonempty.

Let S denote pairs (S,L) with S = (S(n)) a Pδd-closed graded subset of

the graded set ∂̂Dp and L a monic linear pencil satisfying

(i) L is positive definite on Dp;
(ii) L is singular on S∗; and

(iii) i(L) ⊂ S.

Note that S is not empty since, by Corollary 6.9, there is an L such that

(∂̂Dp, L) ∈ S. Let S1 denote the collection of graded sets S occurring in the

pairs (S,L) belonging to S. Choose a minimal (with respect to term wise set
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inclusion) graded set S in S1, whose existence is implied by Lemma 4.2(vii).

We will show that S is not minimal, a contradiction that will complete the

proof.

Since S ∈ S1, there exists an L satisfying conditions (i), (ii), and (iii)

with respect to this S; that is, (S,L) ∈ S. By assumption, i(L)(k) 6= ∅ for

some k. By Proposition 4.5, i(L)z(m) ( Sz(m) for some m. Since also S is Pδd
closed (S = Sz),

(7.1) i(L)z ( S.

Using the fact that the graded set i(L) is nonempty and respects direct

sums, Proposition 6.8 produces a monic linear pencil M that is positive definite

on each Dp(n) and singular on each i(L)(n)∩i(L)∗(n). The proof now proceeds

by showing (i(L)z, L⊕M) ∈ S, which, by the strict inclusion in equation (7.1),

contradicts the minimality of S.

From the construction, L⊕M is positive definite on each Dp(n); that is,

L⊕M satisfies condition (i).

By Lemma 3.2, the graded set i(L)∗ is not empty. Suppose now that

(X, v) ∈ (i(L)z)∗(n) = i(L)∗(n) (see Lemma 4.3(ii)). If (X, v) ∈ i(L)(n), then

M(X), and hence (L ⊕M)(X) is singular. On the other hand, if (X, v) /∈
i(L)(n), then L(X), and hence (L ⊕ M)(X) is singular. Thus, if (X, v) ∈
(i(L)z)∗, then (L ⊕M)(X) is singular. Hence L ⊕M satisfies condition (ii)

with respect to i(L)z.

Finally, for each n, i(L ⊕M)(n) ⊂ i(L)(n) ⊂ i(L)z(n) and thus L ⊕M
satisfies condition (iii) with respect to i(L)z. Hence (i(L)z, L ⊕M) ∈ S and

the proof is complete. �

7.1. Estimates on the size of the linear pencil. This subsection gives esti-

mates on the size of the monic linear pencil L needed in Theorem 1.4. Recall

ν = δ
∑d

0 g
j is the dimension of Pδd .

Lemma 7.2. The size of L need in Theorem 1.4 is at most ν(ν+1)
2 .

Sketch of proof. The proof of Theorem 7.1 can be viewed as a recursive

algorithm for constructing L as a direct sum L = ⊕kj=0Lj . The algorithm ter-

minates in at most ν steps and, using the estimate afforded by Proposition 6.8,

the dimension of Lj (its matrix size) at the j-th step is at most ν − j. Thus
ν(ν+1)

2 is an upper bound on the size of L. �

In the special case that p(0) = p∅ is positive definite, Dp(n) is equal to

the component of 0 of the set {X ∈ Sn(Rg) : p(X) is positive definite} and

accordingly, Dp is called the positivity set of p. In this case it can be assumed

that p(0) = Iδ. Moreover, the estimate on the size of L needed in Theorem 1.4

is reduced dramatically from that given in Proposition 7.2, because, as outlined
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below, the estimate of the size of the pencil in Proposition 6.8 can be reduced

roughly by half.

Let [d2 ]+ denote the largest integer less than or equal to d
2 . Let

(7.2) ν̆ = δ

[ d
2

]+∑
j=0

gj .

Notice that ν̆ is the dimension of the vector space Pδ
[ d
2

]+
and, given (X, v) ∈

∂̂Dp, it is thus an upper bound for the dimension of

M̆ = {q(X)v : q ∈ Pδ
[ d
2

]+
}.

The following lemma is a variant of Lemma 5.6, using the smaller space M̆

instead of M.

Lemma 7.3. Suppose p ∈ Pδ×δd satisfies the conditions of Assumption 1.3

and moreover that p(0) = Iδ . If (X, v) ∈ ∂̂Dp(n), then (PM̆X|M̆ , v) ∈ ∂̂Dp(n);

indeed, tPM̆X|M̆ ∈ Dp(n) for 0 ≤ t < 1 and p(PM̆X|M̆ )v = 0.

Proof. Just as in Lemma 5.6, for 0 ≤ t < 1, we have tPM̆X|M̆ ∈ Dp. Since

p(0) = Iδ, it follows that p(tPM̆X|M̆ ) � 0 and hence p(PM̆X|M̆ ) � 0.

On the other hand, for any word w of length at most d, write w = w1xjw2

where both words w1 and w2 have length at most [d2 ]+. Write v ∈ Rδ ⊗ Rn as

v =
∑δ
α=1 eα ⊗ vα. Since both w2(X)vα and wT1 (X)vβ are in M̆,

〈w(PM̆X|M̆ )vα, vβ〉 =〈PM̆Xjw2(X)vα, w1(X)T vβ〉

=〈Xjw2(X)vα, w
T
1 (X)vβ〉

=〈w(X)vα, vβ〉.

Consequently,

〈p(PM̆X|M̆ )v, v〉 = 〈p(X)v, v〉 = 0.

Since also p(PM̆X|M̆ ) � 0, it follows that p(PM̆X|M̆ )v = 0. �

Applying Lemma 7.3 much like in the proof of Lemma 6.6 produces the

following.

Lemma 7.4. Suppose p satisfies Assumption 1.3 and further that p(0) =

Iδ . If (X, v) ∈ ∂̂Dp(n), then there exists a monic linear pencil L of size ` ≤ ν̆

and a nonzero vector w ∈ R` ⊗ M̆ such that L is positive definite on Dp and

L(X)w = 0.

Summarizing Lemma 7.2 and combining Lemma 7.4 with the argument

behind Lemma 7.2 gives
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Theorem 7.5. Suppose p is a symmetric δ×δ matrix-polynomial of degree

d in g variables that satisfies the conditions of Assumption 1.3.

(i) There is an ` ≤ ν(ν+1)
2 and `×` symmetric matrices A1, . . . , Ag such that

Dp = DL, where L is the monic linear pencil L = I −∑g
j Ajxj .

(ii) In the case that p(0) = Iδ , the estimate on the size of the matrices Aj in

L reduces to ν̆(ν̆+1)
2 , where ν̆ = δ

∑[ d
2

]+
0 gj .

7.2. Further remarks.

Remark 7.6. We anticipate that the results of this paper remain valid if

symmetric free variables are replaced by free variables; that is, with variables

(x1, . . . , xg, y1, . . . , yg) with the involution T on polynomials determined by

xTj = yj , y
T
j = xj and, for polynomials f and g in these variables, (fg)T =

gT fT . These polynomials are evaluated at tuples X = (X1, . . . , Xg) ∈Mn(Rg)
of n×n matrices with real entries. We do not see an obstruction to the free free

variable analog of Theorem 1.4 using the arguments here. Indeed, arguments

for such variables are often easier than for symmetric variables.

Remark 7.7. Fix a positive integer µ and let L denote a collection of monic

linear pencils of size at most µ. The matrix convex set C = C(n) defined by

C(n) = {X ∈ Sn(Rg) : L(X) � 0 for all L ∈ L}

has the following finiteness property. If X ∈ Sn(Rg), then X ∈ C(n) if and only

if for every subspace M of Rn of dimension k ≤ µ, the tuple PMX|M ∈ C(k).

On the other hand, this latter property does not suffice to guarantee that L can

be replaced by a finite collection of monic linear pencils. Thus, some additional

hypothesis, such as assuming Dp is determined by a polynomial, is essential to

reach the conclusion of Theorem 1.4.

8. The Case of irreducible p

The main result of this section, Theorem 8.3, says if p satisfies Assump-

tion 1.3, p(0) = Iδ, and p is irreducible in a sense made precise below, then

p has degree at most two. Moreover, under these assumptions and with p

scalar-valued (δ = 1), Corollary 8.4 exhibits a very close connection between

p and an L satisfying the conclusion of Theorem 1.4. Recall, p is a symmetric

δ×δ-matrix valued polynomial of degree d in g freely noncommuting variables.

Lemma 8.1. Suppose p ∈ Pδ×δd satisfies the conditions of Assumption 1.3.

Suppose further that p(0) = Iδ . If

(i) (X, v) ∈ ∂̂Dp(n);

(ii) L is a monic linear pencil of size ` that is positive definite on each Dp(n);

and
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(iii) there is a vector 0 6= w ∈ R` ⊗ M̆, where

M̆ = {q(X)v : q ∈ Pδ
[ d
2

]+
},

such that L(X)w = 0,

then there exists a nonzero q ∈ Pδ
[ d
2

]++1
such that q(X)v = 0. (Note: it is not

assumed that L is the “master monic linear pencil” from Theorem 7.1.)

Proof. Write the monic linear pencil L as

L = I +
∑

Ajxj ,

where the Aj are `×` symmetric matrices. The tuple X acts on Rn, and hence

Aj⊗X acts upon R`⊗Rn. With respect to this tensor product decomposition,

w =
∑
ej⊗hj , where {e1, . . . , e`} is the standard orthonormal basis for R` and

hj ∈ M̆ . From the definition of M̆ , there exists polynomials rj ∈ Pδ[ d
2

]+
such

that hj = rj(X)v.

Since L(X)w = 0, for each m we have 0 = [eTm ⊗ I]L(X)w. Thus,

0 =[eTm ⊗ I][w +
∑
k

∑
j

Akej ⊗Xkrj(X)v]

=[rm +
∑
k,j

(eTmAkej)xkrj ](X)v.

Now we argue, by contradiction, that the elements qm of Pδ
[ d
2

]++1
given by

qm(x) = rm(x) +
∑
k,j

(eTmAkej)xkrj(x)

are not all 0. If they were all 0, then each rm satisfies rm(0) = 0; that is,

rm has no constant term. But then, by the same reasoning, each rm has no

linear terms, and continuing along these lines we ultimately conclude that all

the rm are 0. On the other hand, since w 6= 0, there is an m such that

hm = rm(X)v 6= 0, a contradiction. Thus, there is an m such that qm 6= 0 and

at the same time qm(X)v = 0. To complete the proof, observe that the degree

of this qm is at most [d2 ]+ + 1. �

Remark 8.2. Let R denote the element of P`×δ whose m-th row is the

rm produced in the proof of Lemma 8.1. The lemma says that R is not zero.

On the other hand, R(X)v = w and L(X)R(X)v = L(X)w = 0. Hence the

symmetric polynomial RTLR is nonzero, but vanishes at (X, v).

The polynomial p is a minimum degree irreducible, or a minimum degree

defining polynomial for Dp, provided the only q ∈ Pδd−1 that satisfies q(X)v = 0

for every n and every (X, v) ∈ ∂̂Dp(n) is q = 0. Note that, while p is restricted

by Assumption 1.3 to be symmetric, the polynomial entries of q need not be

symmetric. Of course, q(X) is not symmetric (whenever δ > 1), but rather an

operator from Rδ ⊗ Rn to Rn.
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Theorem 8.3. If the polynomial p ∈ Pδ×δd satisfies Assumption 1.3 and

if also p(0) = Iδ , then there exists a nonzero q ∈ Pδ
[ d
2

]++1
such that q(X)v = 0

for every n and (X, v) ∈ ∂̂Dp(n).

In particular, if the graded set Dp = (Dp(n)) is bounded and convex, if

p(0) = Iδ, and if p is a minimum degree defining polynomial for Dp, then the

degree of p is at most two.

Proof. Given (X, v) ∈ ∂̂Dp(n), let

C(X,v) = {q ∈ Pδ
[ d
2

]++1
: q(X)v = 0}.

Note that C(X,v) is a subspace of Pδ
[ d
2

]++1
.

Let M̆ = {r(X)v : r ∈ Pδ
[ d
2

]+
}. By Proposition 7.4 there is a monic

linear pencil L of some size ` ≤ ν̆ (ν̆ is defined in Equation (7.2)) such that

L is positive definite on Dp and a nonzero vector w ∈ R` ⊗ M̆ such that

L(X)w = 0. Thus Lemma 8.1 applies to produce a nonzero q ∈ Pδ
[ d
2

]++1
such

that q(X)v = 0. Hence C(X,v) is nontrivial (not (0)).

Given a positive integer s and (Xj , vj) ∈ ∂̂Dp(mj) for 1 ≤ j ≤ s, let

(W,u) = ⊕(Xj , vj). Then (W,u) ∈ ∂̂Dp(m), where m =
∑
mj . Further, by

what has already been proved, there exists a nonzero q ∈ Pδ
[ d
2

]++1
such that

q(W )u = 0. But then q(Xj)vj = 0 for each j. Hence q ∈ ∩`j=1C(Xj ,vj). It

follows that the collection of subspaces C(X,v) is closed with respect to finite

intersections. Since also each C(X,v) is a nontrivial subspace of the finite di-

mensional space Pδ
[ d
2

]++1
, there is a smallest (and nontrivial) subspace C(Y,w)

uniquely determined by the condition that it has minimum dimension. Note

that any (nonzero) q ∈ C(Y,w) must vanish on all of ∂̂Dp, since if (X, v) ∈ ∂̂Dp
and q(X)v 6= 0, then C(X,v) ∩ C(Y,w) ( C(Y,w).

The second part of the theorem follows immediately from the first part

and the definition of minimum degree defining polynomial. �

Corollary 8.4. Suppose p ∈ Pδ×δd satisfies the conditions of Assump-

tion 1.3, p(0) = Iδ , and p is a minimum degree defining polynomial for Dp. If

δ = 1, there exists a 1 × 1 monic linear pencil L0, an integer m ≤ g, and an

m× 1 linear pencil L̂ with L̂(0) = 0 such that Dp = DL, where

L =

Ç
Im L̂

L̂T L0

å
.

In fact, p is the Schur complement of the (1, 1) entry of L; i.e.,

p = L0 − L̂T L̂.
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This corollary of Theorem 8.3 is, for the most part, an improvement over

the main result of [DHM07]. In particular, the result here removes numerous

hypotheses found in [DHM07] while reaching a stronger conclusion, though

here it is assumed that Dp is convex, rather than the weaker condition that Dp
is convex. The techniques here are completely different from those in [DHM07].

Proof. The first part of Corollary 8.4 is covered by Theorem 8.3. It re-

mains to prove that if p is a symmetric free polynomial in P1×1
2 , if p(0) = 1,

and if Dp is both bounded and convex, then p has the form

p = 1 + `(x)−
g∑
j=1

λj(x)2,

where ` and each λj are linear.

Since p has degree two and is symmetric, there is a uniquely determined

symmetric g × g matrix Λ such that

p(x) = 1 + `(x)− 〈Λx, x〉,
where x is the vector with entries xj . If Λ is not positive semi-definite, then

there is a t ∈ Rg such that 〈Λt, t〉 < 0 and hence, for s ∈ R,

p(st) = 1 + s`(t)− s2〈Λt, t〉
is either positive for all s ≥ 0 or is positive for all s ≤ 0 depending upon the

sign of `(t). In either case, Dp(1) is not bounded. Thus the boundedness of

Dp implies that Λ is positive semi-definite. Hence there is an 0 ≤ m ≤ g and

an orthogonal set of vectors u1, . . . , ug such that

Λ =
m∑
1

u`u
T
` .

Letting λ` =
∑
j(u`)jxj ,

L̂ =

Ü
λ1
...

λm

ê
,

and L0 = 1 + ` the conclusion of the corollary follows. �

The following example shows that Corollary 8.4 requires the irreducibility

hypothesis. Here we work with two variables (x, y). Let b(x, y) = 1− x2 − y2

and f(x, y) = 1− (x− 1
4)2 − y2. The set

D = Db⊕f = {(X,Y ) : b(X,Y ) � 0, f(X,Y ) � 0}

is convex. Let p1 = fbf and p2 = bfb. Then Dp1 = D = Dp2 . Hence neither

p1 nor p2 is a minimum degree defining polynomial for D. Indeed, bf vanishes

on ∂̂Dp1 and fb on ∂̂Dp2 . On the other hand, neither bf nor fb is a symmetric

so neither is a candidate for a minimum degree defining polynomial. It is

likely that in this example there does not exist a minimum degree defining

polynomial for D.
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9. Free real algebraic geometry

One of the main branches of real algebraic geometry, dating back to

Hilbert, is semi-algebraic geometry, a subject that deals with polynomial in-

equalities. Free (noncommutative) semi-algebraic geometry has been develop-

ing for about a decade.

This section describes implications of the LMI representation of Theo-

rem 1.4 for free semi-algebraic geometry. It also contains a strengthening of

Theorem 1.4. Another area of contact is semi-definite programming (SDP),

one of the main developments in optimization over the last two decades. We

state one (disturbing) result in the language of SDP in Section 9.6.

9.1. Free semi-algebraic sets. This subsection gives definitions of free semi-

algebraic sets and their principal components. Recall, from Section 1.4, that

pc[W] denotes the principal component of a graded setW ⊂ S(Rg). Also, if p is

a matrix-valued symmetric polynomial and p(0) is invertible, then pc[Ip] = Dp.

Lemma 9.1. If pj ∈ Pδj×δj is symmetric and pj(0) is invertible for j =

1, 2, . . . , s, then

(9.1) ∩s1 Ipj = Ip and ∩s1 Dpj ⊃ Dp,

where p = ⊕pj . Further

(9.2) pc[∩s1Dpj ] = Dp.

Proof. The intersection property of I is obvious, as is the inclusion, Ip ⊂
Ipj , for each j. Hence Dp = pc[Ip] ⊂ pc[Ipj ] = Dpj , so ∩s1Dpj ⊃ Dp and

pc[∩s1Dpj ] ⊃ Dp.

Since Dpj ⊂ Ipj , we have ∩s1Dpj ⊂ ∩s1Ipj = Ip. Consequently,

pc[∩s1Dpj ] ⊂ pc[∩s1Ipj ] = pc[Ip] = Dp. �

Classically, a basic open semi-algebraic set is a set of the form

S = {x ∈ Rg : qj(x) > 0, j = 1, . . . , σ}

for given (commutative) polynomials qj [BCR98]. There are several natural

ways to extend this definition to free ∗-algebras. The one that follows has the

property that theorems flowing from it are stronger than analogous theorems

using other definitions. Paralleling classical real algebraic geometry, we define

a free basic open semi-algebraic set (containing 0) to be a graded set of the

form ∩jDpj for some finite set of symmetric matrix polynomials pj in Pδj×δj
with pj(0) invertible. Note, while each Dpj is a connected set, the intersection

need not be. A free open semi-algebraic set (containing 0) is a finite union of

free basic open semi-algebraic sets.
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In classical real algebraic geometry, the components of a semi-algebraic

set are themselves semi-algebraic. Lemma 9.1 says that the component of 0 of

a free basic open semi-algebraic set is again free basic open semi-algebraic, and

Corollary 9.3 gives natural conditions under which the principal component of

a free open semi-algebraic set is itself a free basic open semi-algebraic set.

This section develops some properties of free open semi-algebraic sets, sev-

eral of which contrast markedly with the classical situation. These properties

lead to a strengthening of Theorem 1.4, and they are used to show that if the

projection of an LMI representable set is a free open semi-algebraic set, then

it is in fact LMI representable.

9.2. Connectedness. Before turning to free semi-algebraic sets, this sub-

section derives some fairly general facts with the theme of connectedness.

Proposition 9.2. Suppose pj ∈ Pδj×δj for j = 1, 2, . . . , s, each pj is

symmetric, and each pj(0) is invertible. Further, suppose W = (W(n)) is a

graded set with W(n) ⊂ ∪sj=1Ipj (n) for each n; that is, W ⊂ ∪s1Ipj . If W
respects direct sums and each W(n) contains 0 and is open and connected,

then there is a k such that W ⊂ Dpk ; that is, W(n) ⊂ Dpk(n) for each n.

Proof. We begin by proving if X ∈ W(n) and if X(t) is a (continuous)

path for 0 ≤ t ≤ 1 such that X(0) = 0, X(1) = X, and X(t) lies inW(n), then

there is a j such that pj(X(t)) is invertible for every 0 ≤ t ≤ 1.

Arguing by contradiction, suppose no such j exists. Then for every 1 ≤
` ≤ N , there exists a 0 ≤ t` ≤ 1 such that p`(X(t`)) is not invertible. Since

W is closed with respect to direct sums, Z = ⊕X(t`) ∈ W(nN). It follows

that there is some 1 ≤ j ≤ N such that Z ∈ Ipj (nN) and in particular, pj(Z)

is invertible, contradicting pj(X(tj)) not invertible. We conclude that there is

some j such that pj(X(t)) is invertible for 0 ≤ t ≤ 1 and hence X(t) ∈ Dpj for

all 0 ≤ t ≤ 1.

Now suppose there is an m and a Y ∈ W(m) such that Y /∈ Ips(m). In

particular, ps(Y ) is not invertible. Since Y is in W(m), there is a continuous

path Y (t) ∈ W(m) such that Y (0) = 0 and Y (1) = Y. Now let n and X ∈
W(n) be given. There is a continuous path X(t) ∈ W(n) with X(0) = 0 and

X(1) = X. Let Z(t) = X(t) ⊕ Y (t), which is in W(n + m) since W respects

direct sums. Thus Z(t) ∈ W(n + m) is a continuous path (0 ≤ t ≤ 1) with

Z(0) = 0. From what has already been proved, there is a j such that pj(Z(t))

is invertible for each 0 ≤ t ≤ 1. Thus pj(Y ) is invertible and we conclude that

j 6= s. At the same time, pj(X(t)) is invertible for 0 ≤ t ≤ 1 and thus X ∈ Dpj .
Hence X ∈ ∪s−1

1 Dpj (n). We have proved: either W(m) ⊂ Ips(m) for every

m, or W(n) ⊂ ∪s−1
1 Dpj (n) ⊂ ∪s−1

1 Ipj (n) for every n. Since W is connected
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and contains 0, the first alternative becomes W is a subset of Dps ; that is,

W(m) ⊂ Dps(m) for every m. Induction now finishes the proof. �

Corollary 9.3. Suppose pk,j is a finite collection (k = 1, . . . , t; j =

1, . . . , sk) of symmetric matrix-valued free polynomials with pk,j(0) invertible.

Suppose the graded set W = (W(n)) has the form

(i) W = pc[∪tk=1 ∩
sk
j=1 Dpk,j ]; or

(ii) W = pc[∪tk=1 ∩
sk
j=1 Ipk,j ].

If W respects direct sums, then there is a k0 such that W = Dpk0 , where pk is

defined by

pk = ⊕skj=1pk,j .

Proof. Either of the hypotheses (i) or (ii) imply that

W ⊂ ∪tk=1 ∩
sk
j=1 Ipk,j = ∪tk=1Ipk ,

the equality holding because of Lemma 9.1. Proposition 9.2 implies there is

a k0 such that Dpk0 ⊃ W. Because of this containment, hypothesis (i), and

Lemma 9.1, we have

Dpk0 ⊃ W = pc[∪tk=1 ∩
sk
j=1 Dpk,j ] ⊃ pc[∪

t
k=1Dpk ] ⊃ Dpk0 .

Thus W = Dpk0 . Hypothesis (ii) along with Ip ⊃ Dp and Dpk0 ⊃ W im-

ply hypothesis (i) holds. So, under either hypothesis, the required conclusion

follows. �

9.3. Free semi-algebraic sets vs. basic ones. Corollary 9.3(i) rephrased in

terms of semi-algebraic sets gives the following result.

Corollary 9.4. Let W = (W(n)) be a graded set that is contained in

(resp. is the principal component of ) a free open semi-algebraic set. If W
respects direct sums and each W(n) contains 0 and is open and connected,

then W is contained in (resp. equals) the principal component of some free

basic open semi-algebraic set.

Theorem 1.4 can now be strengthened as follows.

Theorem 9.5. Suppose the graded set W is bounded and matrix convex.

(i) If W is the principal component of a free open semi-algebraic set ; or

(ii) if W is the principal component of a graded set of the form

∪tk=1 ∩
sk
j=1 Ipk,j ,

then W has an LMI representation.

Proof. Because W is matrix convex, it is closed with respect to direct

sums. Thus, under either hypothesis (i) or (ii) , Corollary 9.3 implies that W
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has the form Dp for some symmetric matrix-valued p. Further, Dp is convex,

and thus Theorem 1.4 implies that Dp has an LMI representation. �

This theorem implies that the principal component of a free open semi-

algebraic set is itself free semi-algebraic under the additional hypothesis that

it is matrix convex.

9.4. Free projections. One of the key facts in real algebraic geometry is

that the projection of a semi-algebraic set is again semi-algebraic (by Tarski’s

principle). Thus, if S ⊂ Rg+h is an open semi-algebraic set, then the projection

onto its first g coordinates is a semi-algebraic set. Given a graded subset D =

(D(n)) of the graded set S(Rg+h), the (free) projection of D (onto (Sn(Rg))) is

the graded set π(D) = (π(D)(n)) defined by

π(D(n)) = {X ∈ Sn(Rg) : there is a Y ∈ Sn(Rh) such that (X,Y ) ∈ D(n)}.

Lemma 9.6. The following properties are inherited under free projections.

(i) respects direct sums ;

(ii) respects unitary conjugation ;

(iii) openness ;

(iv) connectedness ;

(v) boundedness ; and

(vi) matrix convexity.

Proof. Straightforward. �

An immediate consequence of combining this lemma with Theorem 9.5(i)

is a fact that is far from what one finds in the classical commutative case.

Corollary 9.7. If the graded subset W of S(Rg+h) is bounded and has

an representation and if its projection π(W) is a free open semi-algebraic set,
then π(W) has an representation.

This corollary plus the example in the following subsection shows that the

projection of a free bounded basic open semi-algebraic set need not be free

open semi-algebraic. We state this as a proposition, since it is so contrary to

a basic tenet of classical real algebraic geometry.

Proposition 9.8. There exists a monic linear pencil L in g+h variables

such that the projection π(DL) is neither of the form (i) nor (ii) in Theo-

rem 9.5. In particular, there exist convex free basic open semi-algebraic sets

with projections that are not free open semi-algebraic.

To establish the proposition, it suffices (thanks to Corollary 9.7) to pro-

duce a monic linear pencil L in g+h variables with the property that π(DL) is
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not of the form DM for a monic linear pencil M in g variables. The following

is an example of such an L.

9.5. The TV screen : an example. Consider the set

S = {(x1, x2) ∈ R2 : 1− x4
1 − x4

2 > 0},

often called the TV screen. This set is evidently convex. By the line test in

[HV07], there does not exist a monic linear pencil L such that DL(1) = S.

Thus, if T = (T (n)) is a graded set with T (1) = S, then T does not have an

LMI representation.

Now we build a certain type of representation for S. Given α a positive

real number, choose γ4 = 1 + 2α2 and let

(9.3) Lα0 =

Ö
1 0 y1

0 1 y2

y1 y2 1− 2α(y1 + y2)

è
and

(9.4) Lαj =

Ç
1 γxj
γxj α+ yj

å
, j = 1, 2.

Note that the Lαj are not monic, but because Lαj (0) � 0, they can be normalized

to be monic without altering the solution sets of Lαj (X) � 0. The fact that

S = {(x1, x2) ∈ R2 : there exists (y1, y2) such that Lαj (x, y) � 0, j = 0, 1, 2}

follows by taking Schur complements and a bit of algebra, which shows

S = {(x1, x2) : 1− 2α(y1 + y2)− y2
1 − y2

2 > 0, α+ yj >
√

1 + 2α2 x2
j}.

Consequently, S = π(DLα(1)), where Lα = Lα0 ⊕ Lα1 ⊕ Lα2 .

Note that choosing α = 0 gives the representation of the TV screen S

often found in the literature. It is not satisfactory for the present purposes,

since it can not be normalized to be monic.

Proof of Proposition 9.8. As was seen in the example above, for α > 0

fixed, π(DLα) is the projection of an LMI representable set. However, it does

not have either of the forms (i) or (ii) given in the proposition, as otherwise

it would have, by Theorem 9.5, an LMI representation, thereby contradicting

paragraph one of the example. �

9.6. Outside perspectives. Here we include two remarks aimed at readers

with interest in either semi-definite programming or free real algebraic geom-

etry.

Remark 9.9. The paradigm problem in semi-definite programming is to

maximize a linear functional over an SDP representable set. A subset C ⊂ Rg is

called semi-definite programming representable or SDP representable, if there
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is a monic linear pencil L in g + h variables such that C = π(DL(1)). For a

general survey and overview of semi-definite programming, see Nemirovski’s

Plenary Lecture at the 2006 ICM [Nem07].

By analogy with the scalar commutative case, a graded subset C = (C(n))

of S(Rg) is freely SDP representable if there is a monic linear pencil L in g+ h

variables such that C(n) = π(DL(n)) for each n. For example, the graded set

π(DLα) has, by construction, a free SDP representation. In this terminology,

Corollary 9.7 says

if C is both SDP representable and free semi-algebraic, then C
is LMI representable.

Remark 9.10. As mentioned earlier, there are several other natural choices

of the notion of free semi-algebraic set beyond the one adopted earlier. Here we

mention one. Given a symmetric p ∈ Pδ×δ with p(0) � 0 (not just invertible),

let

Pp(n) = {X ∈ Sn(Rg) : p(X) � 0}.
Observe that ∩Ppj = Pp, where p = ⊕pj . The lemmas and theorems of this

section, appropriately modified, hold if Pp is used as the notion of a free basic

open semi-algebraic set. For example, if pc[∪sk=1Pqk ] is bounded and matrix

convex, then it has an LMI representation and is thus a free basic open semi-

algebraic set.

We thank Jiawang Nie for raising the issue of projected matrix convex

sets and we thank Igor Klep and Victor Vinnikov for fruitful discussions of the

TV screen example(s) above.
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